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Cosmic heating and ionization

■ If DM interacts with Standard Model 
particles, then decays/annihilations can 
inject energy into the IGM at early times

■ Extra energy causes 
1. Extra ionization: Detectable in the 

CMB power spectrum
2. Extra heating: can probe with 

Lyman-𝛼 forest measurements
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■ Python code package
– Download at 

https://github.com/hongwanliu/DarkHistory/

■ Simultaneously solves for evolution of 
free electron fraction and gas 
temperature, including exotic sources 
of energy injection

■ Accounts for ‘backreaction’, where 
changes in ionization/temperature 
modify subsequent energy-loss 
processes

■ Model-independent

https://github.com/hongwanliu/DarkHistory/
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Evolution of H ionization

Recombination, 
collisional ionization

DM energy injection

Astrophysical sources, 
use Planck constraints



■ Analogous equation for HeII

■ Assume there is no HeIII, which is a good approximation 
before HeII reionization

Evolution of He ionization



Evolution of temperature 

Hubble expansion

Compton 
scattering off 
the CMB

DM energy 
injection

Recombination, 
collisions, etc.

Photoheating from 
reionization (x*)



Photoheating model
How to treat photoheating rate?

■ ‘Conservative’: Include no photoheating at all. 

■ ‘Photoheated’: Use a two-stage reionization model
1. Before reionization is complete, assume photoheating 

rate is proportional to photoionization rate �̇�∗; 
parametrized by 𝛥T
■ Restrict 𝛥T > 0 K (‘photoheated-I’)
■ Restrict 𝛥T > 2×10! K (‘photoheated-II’), based on 

analytical arguments + simulations 1

2. After reionization, assume IGM is in photoionization 
equilibrium à gives calculable heating rate 2

1 Miralda-Escudé and Rees (1994), McQuinn (2012)
2 Sanderbeck, D’Aloisio, and McQuinn (2016)
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Example histories
■ For ‘conservative’ method, use modified chi-squared

– Only penalize model where overheats
– Most robust because adding photoheating will only 

increase IGM temperature, producing stronger constraints

■ For ‘photoheated’ methods, use standard chi-squared
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DATA



Reionization sources

Planck (2018)

■ Planck 2018: Constrains free electron fraction using either a ‘Tanh’ or 
‘FlexKnot’ model

■ DM produces extra ionization at early times, too little at late times---
need astrophysical sources *

■ Instead of modeling the astrophysics, match the ionization due to DM 
at early times onto the Planck reionization histories at later times



Reionization sources
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‘FlexKnot’ model

■ DM produces extra ionization at early times, too little at late times---
need astrophysical sources *

■ Instead of modeling the astrophysics, match the ionization due to DM 
at early times onto the Planck reionization histories at later times

*Liu, Slatyer, and Zavala (2016)
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Temperature measurements
■ Walther et al. (2019): Compared measured Ly𝛼 forest power 

spectra to hydrodynamical simulations to infer thermal 
evolution of IGM

■ Gaikwad et al. (2020): Fit Ly𝛼 transmission spikes to 
simulations results
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Temperature measurements
■ Combined datasets:

– DarkHistory is not yet equipped to deal with HeII
reionization so we only consider data points at 1+z > 4.6

– At 1+z ~ 6-7, the two data sets are in tension; we 
discard the Walther+ results which could artificially 
strengthen our constraints
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RESULTS
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p-wave annihilation to 𝑒"𝑒#
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Summary
■ We can self-consistently construct ionization and IGM 

temperature histories…
– in the presence of DM energy injection by using 

DarkHistory to solve evolution equations
– in the presence of reionization sources by using Planck 

measurements
■ We use Ly𝛼 measurements of IGM temperature to constrain DM 

decay and p-wave annihilation
– ‘Conservative’ constraints assume no photoheating
– ‘Photoheated’ constraints use two-stage model that 

strengthens limits by factor of 2-8

■ Could similarly use future 21cm observations for z~20

■ As uncertainties on IGM temperature measurements shrink, and 
reionization and photoheating models become more constrained, 
limits could strengthen considerably



BACKUP SLIDES



Photon constraints
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Photoheating model: Stage 2

■ ‘Photoheated’: Use a two-stage reionization model
1. Before reionization is complete, assume photoheating is 

proportional to photoionization; parametrized by 𝛥T
2. After reionization, assume IGM is in photoionization 

equilibrium
■ Parametrized by 𝛼"# (defined by 𝐽$ ∝ 𝜐%&!")
■ Restrict −0.5 < 𝛼"#< 1.5

Sum is over HI and HeI (not HeII).
𝐸! is the ionization potential, 
𝛾! is the power-law index for photoionization cross section at threshold, 
𝛼"! is the case-A recombination coefficient.



Heating/cooling terms
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Ionization terms
■ Atomic processes

– Before z*, case-B scenario

– After z < z*, case-A scenario

■ Dark matter energy injection



Effects of including HeIII
■ Currently, DarkHistory

assumes there is never HeIII

■ However, still allows energy to 
be deposited into the IGM by

1. Photoionization of 
HeII à HeIII + e-

2. Resulting electron 
thermalizes with IGM

3. Does NOT keep track of 
change to HeII and HeIII
fractions

■ This treatment is not self-
consistent; however, the effect 
is small
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Uncertainty from 
p-wave boost factor
■ For p-wave, main contribution to 

boost factor is from largest halos
– Well studied by N-body 

simulations

■ Uncertainty on boost factor is 
small, hence uncertainty on our 
constraints is small, 

– Results in < 0.5% variation 
in our results

Liu et al. (2016)



Comparison to optical depth 
constraints
■ Are the histories along our 

constraints excluded by their 
contribution to the optical depth?

– Planck 2018: For tanh 
function reionization, 
𝜏 = 0.0519"#.##%&'#.##(#

■ Temperature constraints are 
comparable to ionization 
constraints, and stronger in 
many places
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Test statistics
■ For the ‘conservative’ method, we use a modified chi-squared 

that only penalizes data points that overheat the IGM 

■ Can also think of this as a standard chi-squared test with a 
flexible background heating model

– Model contributes a non-negative amount to the 
temperature at each measured redshift
■ In bins where contribution from DM is under 

measurement, model is set to match data exactly 
■ In bins where contribution from DM exceeds 

measurement, model is fixed to 0

– # of model parameters = # of bins where DM is under is 
under measurement

– Hence, degrees of freedom = # of bins where DM 
exceeds measurement


