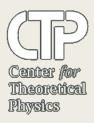
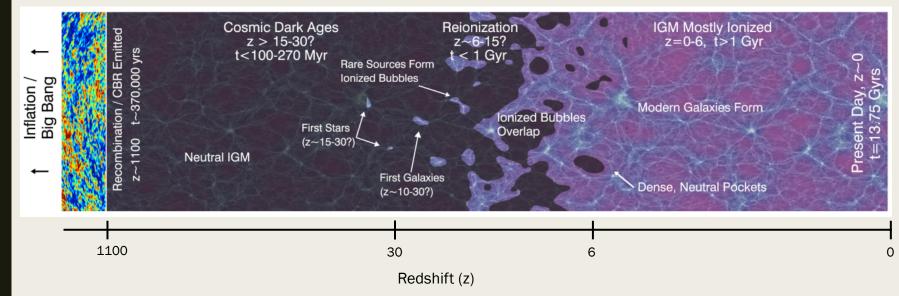
LYMAN-α CONSTRAINTS on COSMIC HEATING from DARK MATTER ANNIHILATION and DECAY


Wenzer Qin

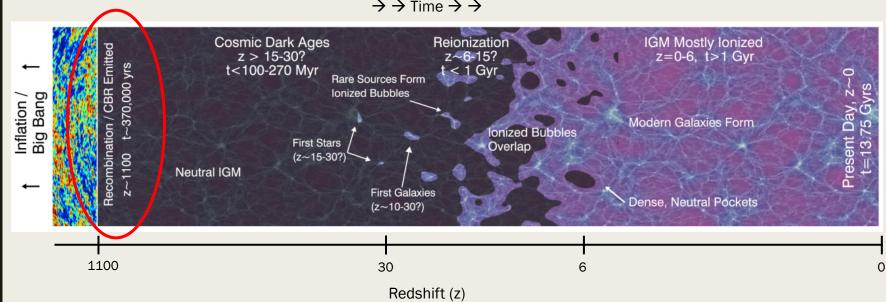
with Greg Ridgway, Hongwan Liu, and Tracy Slatyer

based on [2008.01084]

MIT Center for Theoretical Physics, BSM Journal Club August 14th, 2020

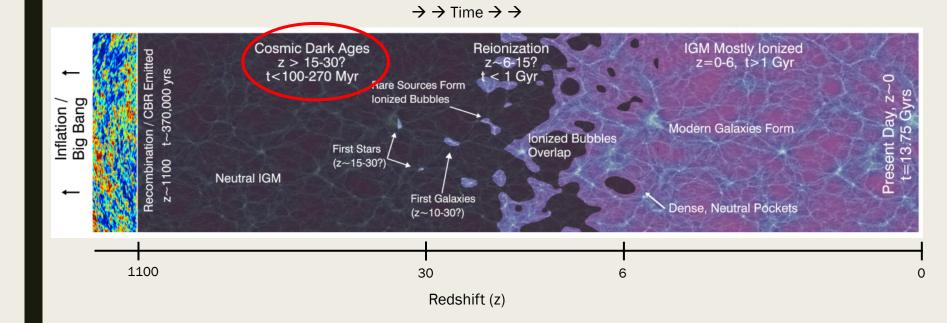


Outline

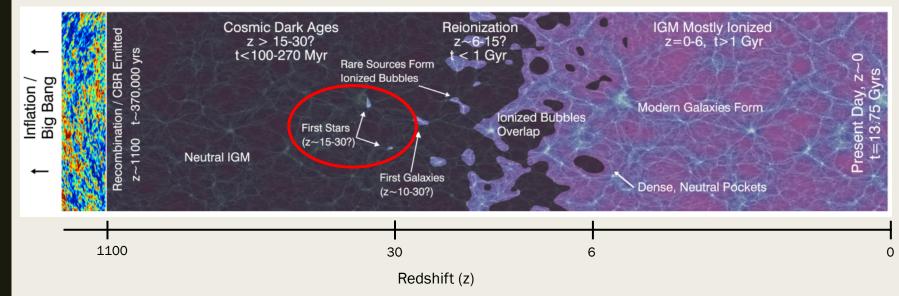

Early universe

- Effect of dark matter (DM) on ionization and temperature
- DarkHistory code package
 - Choosing a reionization model
- Data
 - Reionization histories from Planck 2018
 - IGM temperature measurements from $Ly\alpha$
- New constraints
- Conclusion

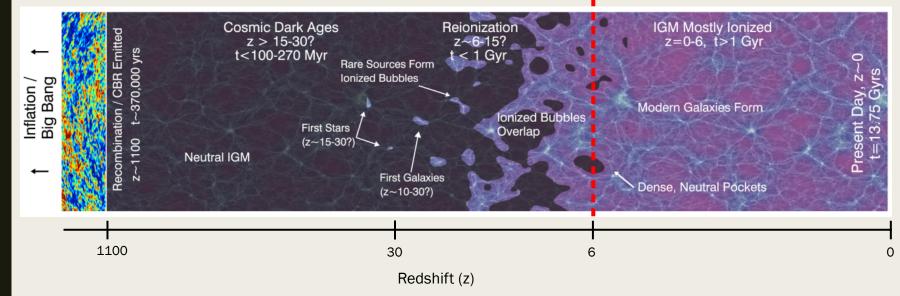
$\rightarrow \rightarrow \text{Time} \rightarrow \rightarrow$



Robertson et al. (2010)

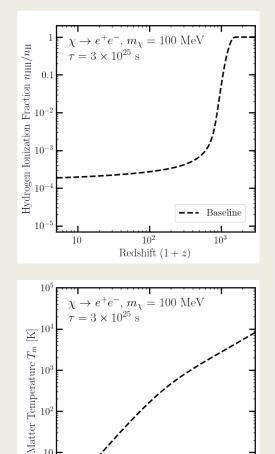

 $[\]rightarrow \rightarrow$ Time $\rightarrow \rightarrow$

Robertson et al. (2010)


Robertson et al. (2010)

$\rightarrow \rightarrow \text{Time} \rightarrow \rightarrow$

Robertson et al. (2010)


$\rightarrow \rightarrow$ Time $\rightarrow \rightarrow$

Robertson et al. (2010)

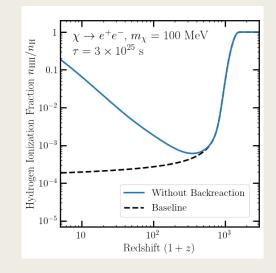
Cosmic heating and ionization

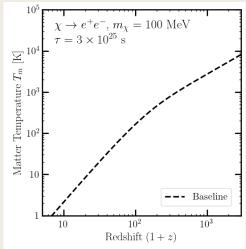
- If DM interacts with Standard Model particles, then decays/annihilations can inject energy into the IGM at early times
- Extra energy causes
 - Extra ionization: Detectable in the 1. CMB power spectrum
 - 2. Extra heating: can probe with Lyman- α forest measurements

 10^{2}

Redshift (1+z)

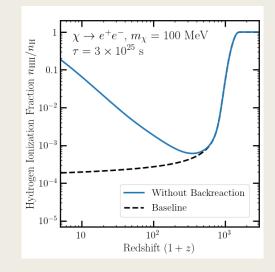
Baseline

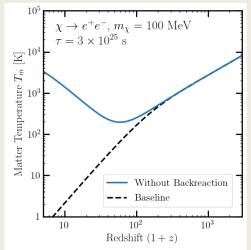

 10^{3}


10

10

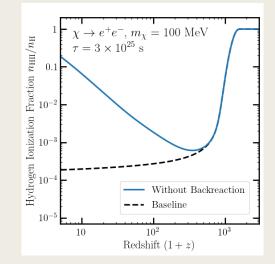
Cosmic heating and ionization

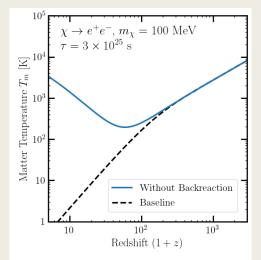

- If DM interacts with Standard Model particles, then decays/annihilations can inject energy into the IGM at early times
- Extra energy causes
 - 1. Extra ionization: Detectable in the CMB power spectrum
 - 2. Extra heating: can probe with Lyman-α forest measurements



Cosmic heating and ionization

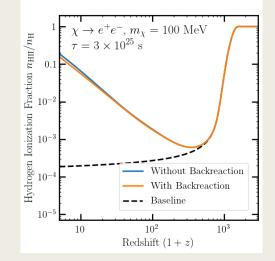
- If DM interacts with Standard Model particles, then decays/annihilations can inject energy into the IGM at early times
- Extra energy causes
 - 1. Extra ionization: Detectable in the CMB power spectrum
 - 2. Extra heating: can probe with Lyman-α forest measurements

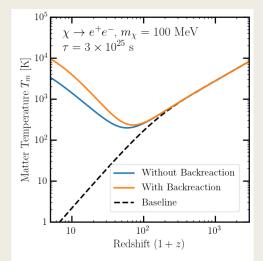


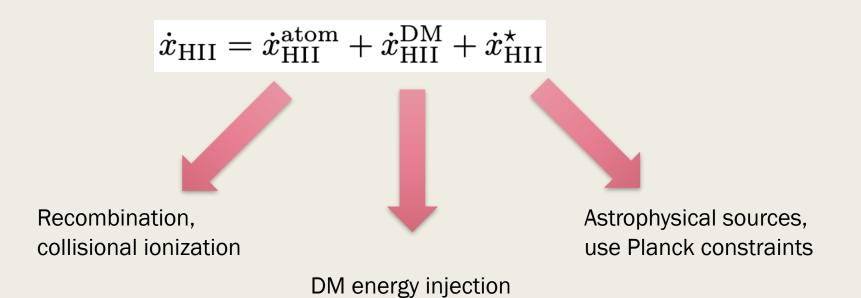


Python code package

- Download at https://github.com/hongwanliu/DarkHistory/
- Simultaneously solves for evolution of free electron fraction and gas temperature, including exotic sources of energy injection
- Accounts for 'backreaction', where changes in ionization/temperature modify subsequent energy-loss processes
- Model-independent

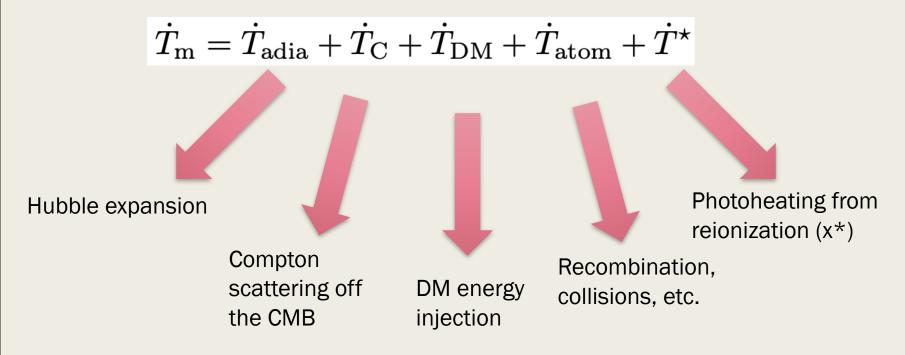





Python code package

- Download at https://github.com/hongwanliu/DarkHistory/
- Simultaneously solves for evolution of free electron fraction and gas temperature, including exotic sources of energy injection
- Accounts for 'backreaction', where changes in ionization/temperature modify subsequent energy-loss processes
- Model-independent

Evolution of H ionization



Evolution of He ionization

$$\dot{x}_{\text{HeII}} = \dot{x}_{\text{HeII}}^{\text{atom}} + \dot{x}_{\text{HeII}}^{\text{DM}} + \dot{x}_{\text{HeII}}^{\star}$$

 $x_{\text{HeIII}} = 0$

- Analogous equation for Hell
- Assume there is no HeIII, which is a good approximation before HeII reionization

Evolution of temperature

How to treat photoheating rate?

- 'Conservative': Include no photoheating at all.
- 'Photoheated': Use a two-stage reionization model
 - 1. Before reionization is complete, assume photoheating rate is proportional to photoionization rate \dot{x}^* ; parametrized by ΔT
 - Restrict $\Delta T > 0 K$ ('photoheated-l')
 - Restrict $\Delta T > 2 \times 10^4$ K ('photoheated-II'), based on analytical arguments + simulations ¹
 - 2. After reionization, assume IGM is in photoionization equilibrium \rightarrow gives calculable heating rate ²

¹ Miralda-Escudé and Rees (1994), McQuinn (2012)
 ² Sanderbeck, D'Aloisio, and McQuinn (2016)

How to treat photoheating rate?

- 'Conservative': Include no photoheating at all.
- 'Photoheated': Use a two-stage reionization model
 - 1. Before reionization is complete, assume photoheating rate is proportional to photoionization rate \dot{x}^* ; parametrized by ΔT
 - Restrict $\Delta T > 0 K$ ('photoheated-l')
 - Restrict $\Delta T > 2 \times 10^4$ K ('photoheated-II'), based on analytical arguments + simulations ¹
 - 2. After reionization, assume IGM is in photoionization equilibrium \rightarrow gives calculable heating rate ²

¹ Miralda-Escudé and Rees (1994), McQuinn (2012) ² Sanderbeck, D'Aloisio, and McQuinn (2016)

How to treat photoheating rate?

- 'Conservative': Include no photoheating at all.
- Photoheated': Use a two-stage reionization model
 - 1. Before reionization is complete, assume photoheating rate is proportional to photoionization rate \dot{x}^* ; parametrized by ΔT
 - Restrict $\Delta T > 0$ K ('photoheated-I')
 - Restrict $\Delta T > 2 \times 10^4$ K ('photoheated-II'), based on analytical arguments + simulations ¹
 - 2. After reionization, assume IGM is in photoionization equilibrium \rightarrow gives calculable heating rate ²

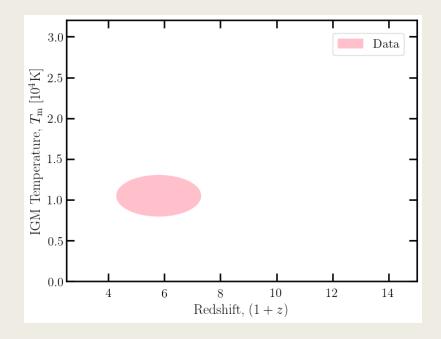
¹ Miralda-Escudé and Rees (1994), McQuinn (2012) ² Sanderbeck, D'Aloisio, and McQuinn (2016)

How to treat photoheating rate?

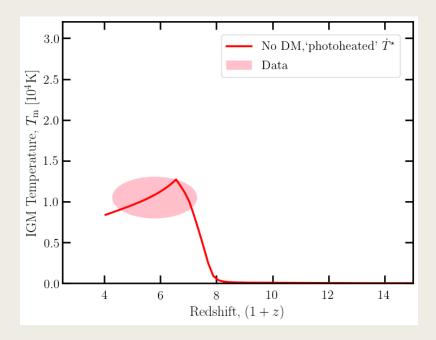
- 'Conservative': Include no photoheating at all.
- Photoheated': Use a two-stage reionization model
 - 1. Before reionization is complete, assume photoheating rate is proportional to photoionization rate \dot{x}^* ; parametrized by ΔT
 - Restrict $\Delta T > 0 K$ ('photoheated-I')
 - Restrict △T > 2×10⁴ K ('photoheated-II'), based on analytical arguments + simulations ¹
 - 2. After reionization, assume IGM is in photoionization equilibrium \rightarrow gives calculable heating rate ²

¹ Miralda-Escudé and Rees (1994), McQuinn (2012)

² Sanderbeck, D'Aloisio, and McQuinn (2016

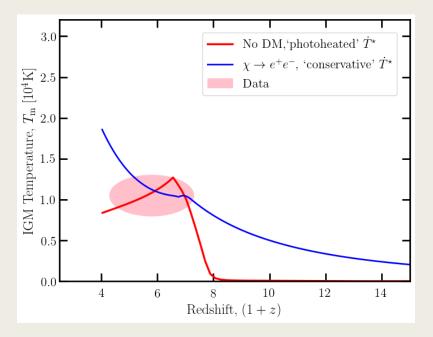

How to treat photoheating rate?

- 'Conservative': Include no photoheating at all.
- 'Photoheated': Use a two-stage reionization model
 - 1. Before reionization is complete, assume photoheating rate is proportional to photoionization rate \dot{x}^* ; parametrized by ΔT
 - Restrict $\Delta T > 0 K$ ('photoheated-I')
 - Restrict △T > 2×10⁴ K ('photoheated-II'), based on analytical arguments + simulations ¹
 - 2. After reionization, assume IGM is in photoionization equilibrium \rightarrow gives calculable heating rate ²

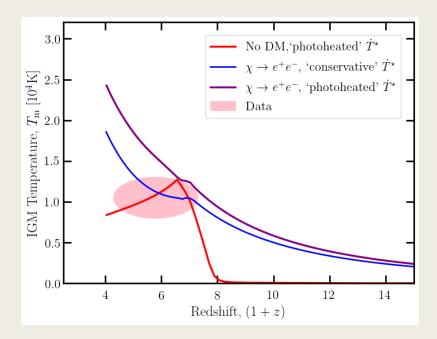

¹ Miralda-Escudé and Rees (1994), McQuinn (2012) ² Sanderbeck, D'Aloisio, and McQuinn (2016)

- For 'conservative' method, use modified chi-squared
 - Only penalize model where overheats
 - Most robust because adding photoheating will only increase IGM temperature, producing stronger constraints
- For 'photoheated' methods, use standard chi-squared

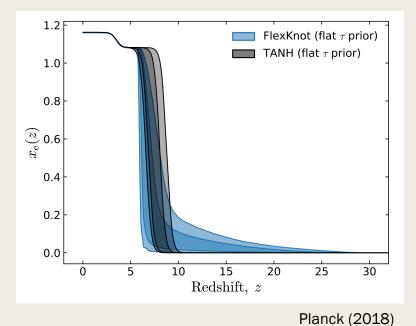
- For 'conservative' method, use modified chi-squared
 - Only penalize model where overheats
 - Most robust because adding photoheating will only increase IGM temperature, producing stronger constraints
- For 'photoheated' methods, use standard chi-squared

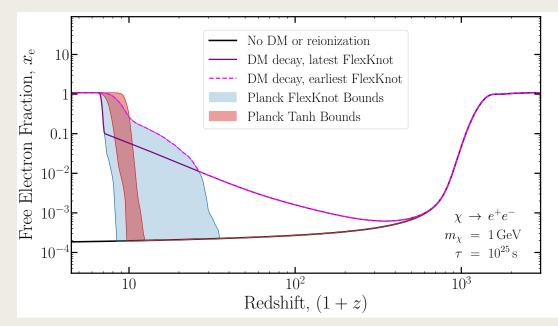


- For 'conservative' method, use modified chi-squared
 - Only penalize model where overheats
 - Most robust because adding photoheating will only increase IGM temperature, producing stronger constraints
- For 'photoheated' methods, use standard chi-squared

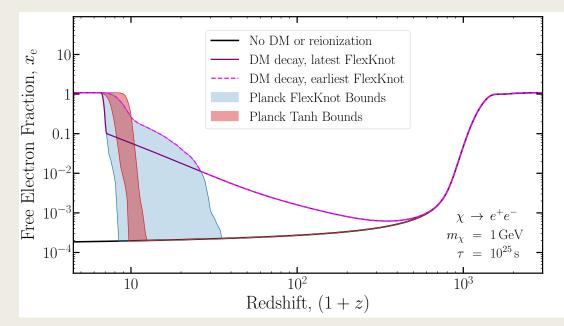


- For 'conservative' method, use modified chi-squared
 - Only penalize model where overheats
 - Most robust because adding photoheating will only increase IGM temperature, producing stronger constraints

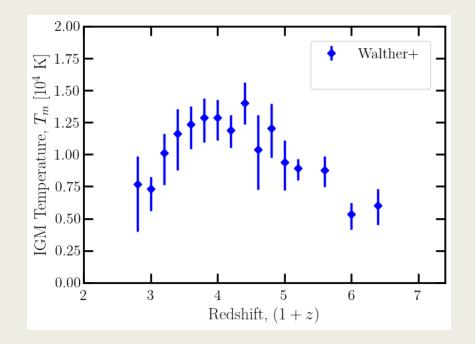

- For 'conservative' method, use modified chi-squared
 - Only penalize model where overheats
 - Most robust because adding photoheating will only increase IGM temperature, producing stronger constraints
- For 'photoheated' methods, use standard chi-squared


Reionization sources

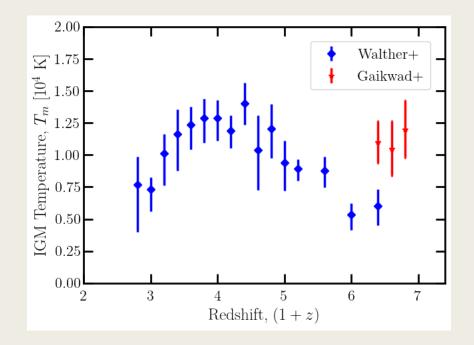
- Planck 2018: Constrains free electron fraction using either a 'Tanh' or 'FlexKnot' model
- DM produces extra ionization at early times, too little at late times--need astrophysical sources *
- Instead of modeling the astrophysics, match the ionization due to DM at early times onto the Planck reionization histories at later times


Reionization sources

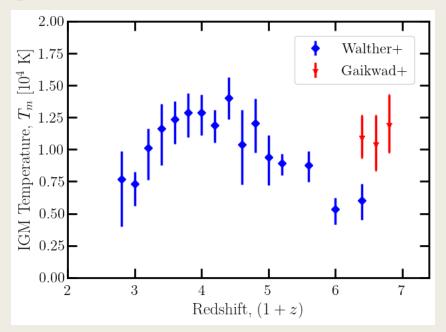
- Planck 2018: Constrains free electron fraction using either a 'Tanh' or 'FlexKnot' model
- DM produces extra ionization at early times, too little at late times--need astrophysical sources *
- Instead of modeling the astrophysics, match the ionization due to DM at early times onto the Planck reionization histories at later times



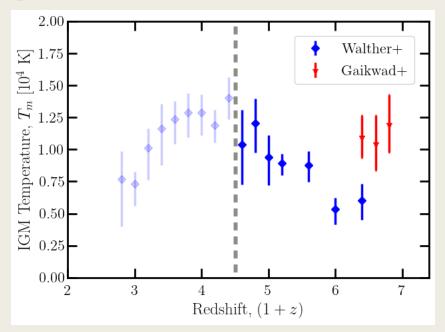
Reionization sources


- Planck 2018: Constrains free electron fraction using either a 'Tanh' or 'FlexKnot' model
- DM produces extra ionization at early times, too little at late times--need astrophysical sources *
- Instead of modeling the astrophysics, match the ionization due to DM at early times onto the Planck reionization histories at later times

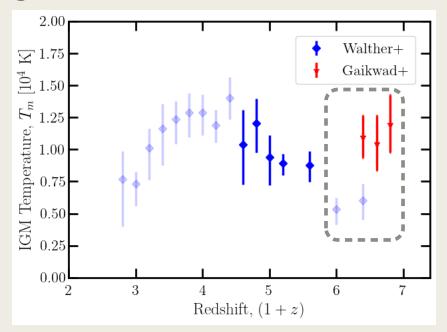
- Walther et al. (2019): Compared measured Lyα forest power spectra to hydrodynamical simulations to infer thermal evolution of IGM
- Gaikwad et al. (2020): Fit Lyα transmission spikes to simulations results

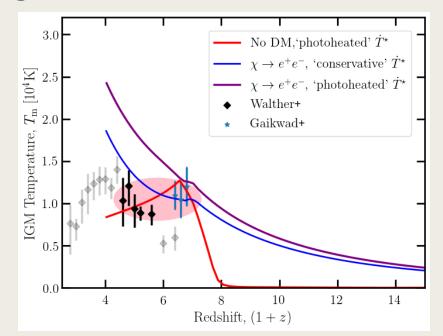


- Walther et al. (2019): Compared measured Lyα forest power spectra to hydrodynamical simulations to infer thermal evolution of IGM
- Gaikwad et al. (2020): Fit Lyα transmission spikes to simulations results

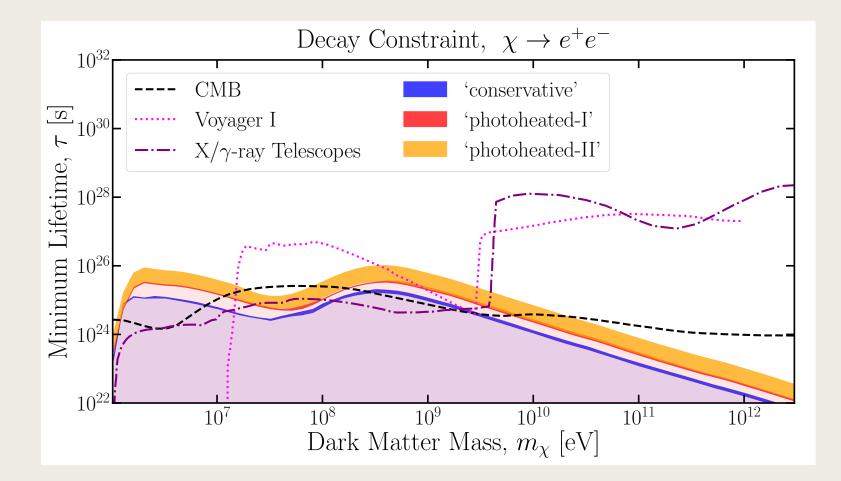


Combined datasets:

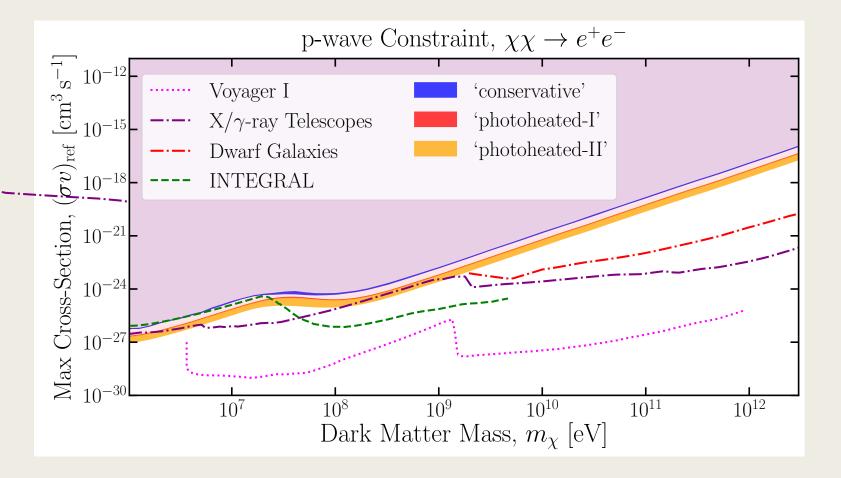

- DarkHistory is not yet equipped to deal with Hell
 reionization so we only consider data points at 1+z > 4.6
- At 1+z ~ 6-7, the two data sets are in tension; we discard the Walther+ results which could artificially strengthen our constraints


- Combined datasets:
 - DarkHistory is not yet equipped to deal with Hell
 reionization so we only consider data points at 1+z > 4.6
 - At 1+z ~ 6-7, the two data sets are in tension; we discard the Walther+ results which could artificially strengthen our constraints

- Combined datasets:
 - DarkHistory is not yet equipped to deal with Hell
 reionization so we only consider data points at 1+z > 4.6
 - At 1+z ~ 6-7, the two data sets are in tension; we discard the Walther+ results which could artificially strengthen our constraints



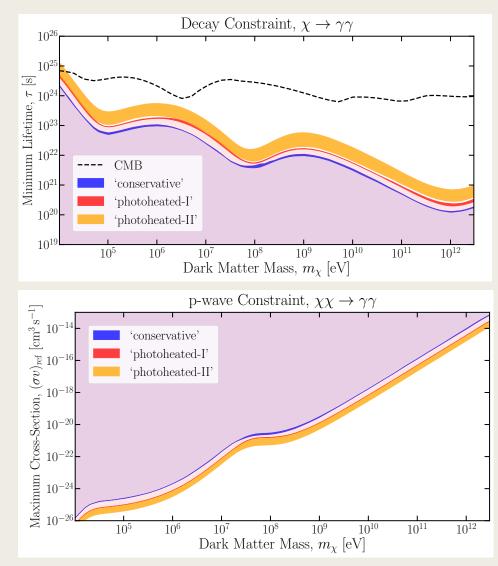
- Combined datasets:
 - DarkHistory is not yet equipped to deal with Hell
 reionization so we only consider data points at 1+z > 4.6
 - At 1+z ~ 6-7, the two data sets are in tension; we discard the Walther+ results which could artificially strengthen our constraints



RESULTS

Decay to e^+e^-

p-wave annihilation to e^+e^-



Summary

- We can self-consistently construct ionization and IGM temperature histories...
 - in the presence of DM energy injection by using DarkHistory to solve evolution equations
 - in the presence of reionization sources by using Planck measurements
- We use Lyα measurements of IGM temperature to constrain DM decay and p-wave annihilation
 - 'Conservative' constraints assume no photoheating
 - 'Photoheated' constraints use two-stage model that strengthens limits by factor of 2-8
- Could similarly use future 21cm observations for z~20
- As uncertainties on IGM temperature measurements shrink, and reionization and photoheating models become more constrained, limits could strengthen considerably

BACKUP SLIDES

Photon constraints

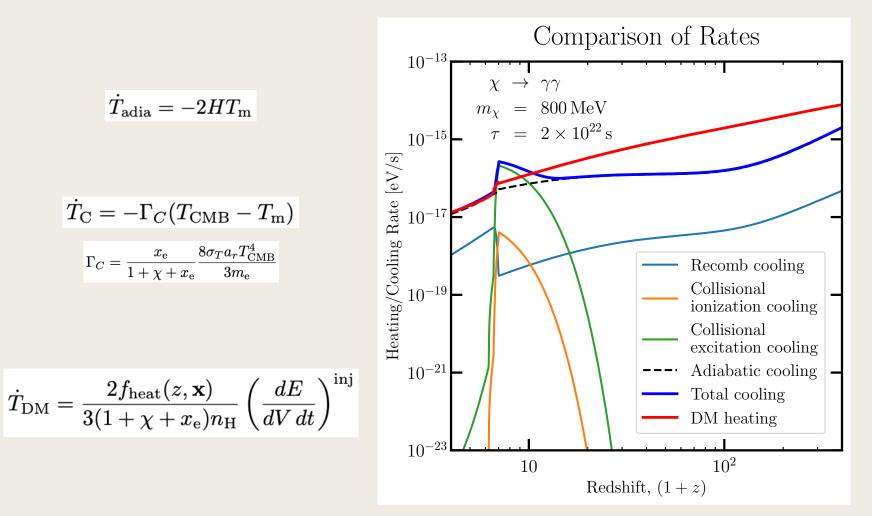
Photoheating model: Stage 2

Photoheated': Use a two-stage reionization model

- 1. Before reionization is complete, assume photoheating is proportional to photoionization; parametrized by ΔT
- 2. After reionization, assume IGM is in photoionization equilibrium
 - Parametrized by α_{bk} (defined by $J_v \propto v^{-\alpha_{bk}}$)

• Restrict
$$-0.5 < \alpha_{bk} < 1.5$$

$$\dot{T}^{\star} = \begin{cases} \dot{x}_{\rm HII}^{\star} (1+\chi) \Delta T , & x_{\rm HII} < 0.99 \\ \sum_{i} \frac{E_i x_i}{3(\gamma_i - 1 + \alpha_{\rm bk})} \alpha_{\rm A,i} n_{\rm H} , & x_{\rm HII} \ge 0.99 \end{cases}$$


Sum is over HI and HeI (not HeII).

 E_i is the ionization potential,

 γ_i is the power-law index for photoionization cross section at threshold,

 α_{Ai} is the case-A recombination coefficient.

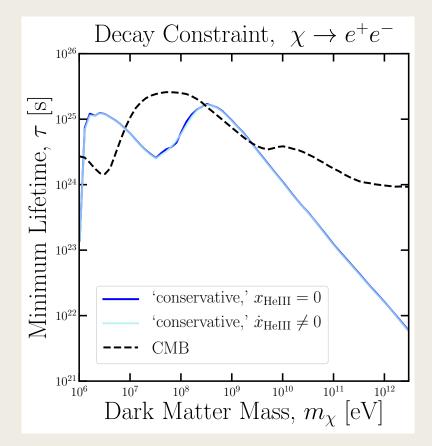
Heating/cooling terms

Ionization terms

Atomic processes

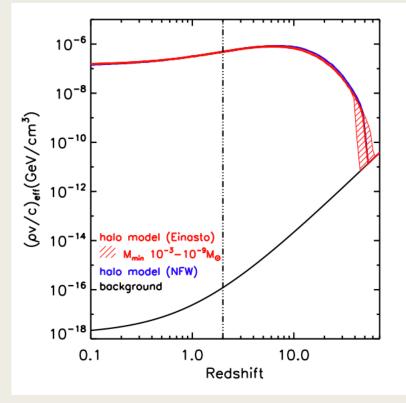
Before z*, case-B scenario

$$\begin{aligned} \dot{x}_{\mathrm{HII}}^{\mathrm{atom}} &= 4 \,\mathcal{C}_{\mathrm{H}} \left[\left(1 - x_{\mathrm{HII}} \right) \beta_{\mathrm{H}}^{B} e^{-E_{\mathrm{H}}/T_{\mathrm{CMB}}} - n_{\mathrm{H}} \, x_{\mathrm{e}} \, x_{\mathrm{HII}} \, \alpha_{\mathrm{H}}^{B} \right] \\ \dot{x}_{\mathrm{HeII}}^{\mathrm{atom}} &= 4 \, \sum_{s} \mathcal{C}_{\mathrm{HeII},s} \left[g_{s}(\chi - x_{\mathrm{HeI}}) \, \beta_{\mathrm{HeI},s}^{B} e^{-E_{\mathrm{HeII},s}/T_{\mathrm{CMB}}} - n_{\mathrm{H}} \, x_{\mathrm{e}} \, x_{\mathrm{HeII}} \, \alpha_{\mathrm{HeI},s}^{B} \right] \end{aligned}$$


- After
$$z < z^*$$
, case-A scenario
 $\dot{x}_{\text{HII}}^{\text{atom}} = n_{\text{H}} (1 - x_{\text{HII}}) x_{\text{e}} \Gamma_{\text{eHI}} - n_{\text{H}} x_{\text{e}} x_{\text{HII}} \alpha_{\text{HII}}^{A}$

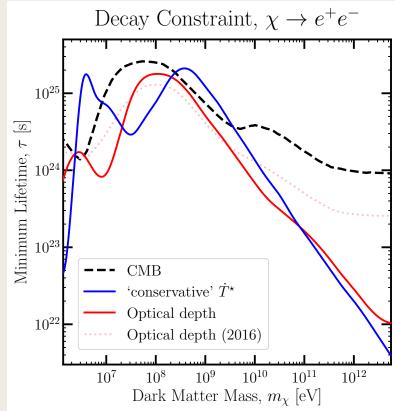
Dark matter energy injection

$$\begin{split} \dot{x}_{\rm HII}^{\rm DM} &= \left[\frac{f_{\rm H \ ion}(z, \mathbf{x})}{E_{\rm H} n_{\rm H}} + \frac{(1 - \mathcal{C}_{\rm H}) f_{\rm exc}(z, \mathbf{x})}{0.75 E_{\rm H} n_{\rm H}}\right] \left(\frac{dE}{dV \ dt}\right)^{\rm inj} \\ \dot{x}_{\rm HeII}^{\rm DM} &= \frac{f_{\rm He \ ion}(z, \mathbf{x})}{E_{\rm HeI} n_{\rm He}} \left(\frac{dE}{dV \ dt}\right)^{\rm inj} \\ \dot{x}_{\rm HeIII}^{\rm DM} &= 0 \end{split}$$


Effects of including HeIII

- Currently, DarkHistory assumes there is never HeIII
- However, still allows energy to be deposited into the IGM by
 - 1. Photoionization of HeII \rightarrow HeIII + e-
 - 2. Resulting electron thermalizes with IGM
 - 3. Does NOT keep track of change to Hell and Helll fractions
- This treatment is not selfconsistent; however, the effect is small

Uncertainty from p-wave boost factor


- For p-wave, main contribution to boost factor is from largest halos
 - Well studied by N-body simulations
- Uncertainty on boost factor is small, hence uncertainty on our constraints is small,
 - Results in < 0.5% variation in our results

Liu et al. (2016)

Comparison to optical depth constraints

- Are the histories along our constraints excluded by their contribution to the optical depth?
 - Planck 2018: For tanh function reionization, $\tau = 0.0519^{+0.0030}_{-0.0079}$
- Temperature constraints are comparable to ionization constraints, and stronger in many places

Test statistics

- For the 'conservative' method, we use a modified chi-squared that only penalizes data points that overheat the IGM
- Can also think of this as a standard chi-squared test with a flexible background heating model
 - Model contributes a non-negative amount to the temperature at each measured redshift
 - In bins where contribution from DM is under measurement, model is set to match data exactly
 - In bins where contribution from DM exceeds measurement, model is fixed to 0
 - # of model parameters = # of bins where DM is under is under measurement
 - Hence, degrees of freedom = # of bins where DM exceeds measurement