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Cosmic heating and ionization
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DarkHistiry

Python code package

- Download at

Simultaneously solves for evolution of
free electron fraction and gas
temperature, including exotic sources
of energy injection

Accounts for ‘backreaction’, where
changes in ionization/temperature
modify subsequent energy-loss
processes

Model-independent
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https://github.com/hongwanliu/DarkHistory/

DarkHistiry

Python code package

- Download at

Simultaneously solves for evolution of
free electron fraction and gas
temperature, including exotic sources
of energy injection
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https://github.com/hongwanliu/DarkHistory/

Evolution of H ionization

. __ satom - DM .« %
THII = TH11 T THID T THIT

Recombination, Astrophysical sources,
collisional ionization use Planck constraints

DM energy injection




Evolution of He ionization

. __ satom - DM . %
THell = THell T THell T LHell

THerrl = 0

m Analogous equation for Hell

m Assume there is no Helll, which is a good approximation
before Hell reionization




Evolution of temperature

Tm — .adia + TC + TDM + Tatom + T*

(e seams Photoheating from
reionization (x*)
Compton Recombination,
scattering off DM energy collisions, etc.

the CMB injection
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Photoheating model

How to treat photoheating rate?

m ‘Conservative’: Include no photoheating at all.

m ‘Photoheated’: Use a two-stage reionization model

1.

Before reionization is complete, assume photoheating
rate is proportional to photoionization rate x*;
parametrized by AT

m Restrict AT > 0 K (‘photoheated-I’)

m Restrict AT > 2x10* K (‘photoheated-II’), based on
analytical arguments + simulations 1

1 Miralda-Escudé and Rees (1994), McQuinn (2012)



Photoheating model

How to treat photoheating rate?

m ‘Conservative’: Include no photoheating at all.

m ‘Photoheated’: Use a two-stage reionization model

1.

Before reionization is complete, assume photoheating
rate is proportional to photoionization rate x*;
parametrized by AT

m Restrict AT > 0 K (‘photoheated-I’)

m Restrict AT > 2x10* K (‘photoheated-II’), based on
analytical arguments + simulations 1

After reionization, assume IGM is in photoionization
equilibrium -2 gives calculable heating rate 2

1 Miralda-Escudé and Rees (1994), McQuinn (2012)
2Sanderbeck, D’Aloisio, and McQuinn (2016)
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Example histories
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Example histories

m For ‘conservative’ method, use modified chi-squared
— Only penalize model where overheats

— Most robust because adding photoheating will only
increase IGM temperature, producing stronger constraints
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Example histories

m For ‘conservative’ method, use modified chi-squared
— Only penalize model where overheats

— Most robust because adding photoheating will only
increase IGM temperature, producing stronger constraints

m For ‘photoheated’ methods, use standard chi-squared
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Relonization sources

m Planck 2018: Constrains free electron fraction using either a ‘Tanh’ or
‘Flexknot” model

[ FlexKnot (flat 7 prior)
[ TANH (flat 7 prior)
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Relonization sources

m Planck 2018: Constrains free electron fraction using either a ‘Tanh’ or
‘Flexknot” model

m DM produces extra ionization at early times, too little at late times---
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Relonization sources

m Planck 2018: Constrains free electron fraction using either a ‘Tanh’ or
‘FlexkKnot’” model

m DM produces extra ionization at early times, too little at late times---
need astrophysical sources *

m Instead of modeling the astrophysics, match the ionization due to DM
at early times onto the Planck reionization histories at later times
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Temperature measurements

m Walther et al. (2019): Compared measured Lya forest power

spectra to hydrodynamical simulations to infer thermal
evolution of IGM
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Temperature measurements

m Gaikwad et al. (2020): Fit Lya transmission spikes to
simulations results
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Temperature measurements

m Combined datasets:
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Temperature measurements

m Combined datasets:

- DarkHistory is not yet equipped to deal with Hell
reionization so we only consider data points at 1+z > 4.6
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Temperature measurements

m Combined datasets:

- DarkHistory is not yet equipped to deal with Hell
reionization so we only consider data points at 1+z > 4.6

- At 1+z ~ 6-7, the two data sets are in tension; we
discard the Walther+ results which could artificially
strengthen our constraints
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Temperature measurements

m Combined datasets:

- DarkHistory is not yet equipped to deal with Hell
reionization so we only consider data points at 1+z > 4.6

- At 1+z ~ 6-7, the two data sets are in tension; we
discard the Walther+ results which could artificially
strengthen our constraints

I | I | I |
3.0F : ‘ 3 ok
——— No DM, ‘photoheated’ T'
. —— X — e7e”, ‘conservative’ T*
< 25k . -
7 —— Y — e7e”, ‘photoheated’ T*
= o  Walther+
H 20 *  Gaikwad+ 7]
T 15
= 1.0}
=
9
0.5
0.0 L ' ' . '

1 6 8 10 12 14
Redshift, (1 + z)



RESULTS



Decaytoete™

Decay Constraint, y — e’e”

1032 | | | | | |
---- CMB B conscrvative’
2. 1030k Voyager I B ‘photoheated-T’ _
i —-—- X/~-ray Telescopes ‘photoheated-1I"
<
'4% 1028_ ~ -~ . /‘/'/ ~
Lg , ...................... :\.\5’/'
S e, i
=100 i e | -
g ------------ |
-E N
.= 1024 _____________
=
1022 1 ]
107 10°

| | |
107 1010 101! 1012

Dark Matter Mass, m, [eV]




p-wave annihilationto ete™
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Summary

m We can self-consistently construct ionization and IGM
temperature histories...

— in the presence of DM energy injection by using
DarkHistory to solve evolution equations

- in the presence of reionization sources by using Planck
measurements

m We use Lya measurements of IGM temperature to constrain DM
decay and p-wave annihilation

- ‘Conservative’ constraints assume no photoheating
- ‘Photoheated’ constraints use two-stage model that
strengthens limits by factor of 2-8
m Could similarly use future 21cm observations for z~20

m As uncertainties on IGM temperature measurements shrink, and
reionization and photoheating models become more constrained,
limits could strengthen considerably




BACKUP SLIDES



Photon constraints

Decay Constraint, x — v
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Photoheating model: Stage 2

m ‘Photoheated’: Use a two-stage reionization model

1. Before reionization is complete, assume photoheating is
proportional to photoionization; parametrized by AT

2. After reionization, assume IGM is in photoionization
equilibrium

m Parametrized by a, (defined by J,, oc v~%pk)
m Restrict —0.5 < a;,< 1.5

:i?’ﬁn(l + X)AT, i < 0.99
T* = Eix;
i , > 0.99
; 3(7?’ 1 + abk) A sNH THII

L Sum is over Hl and Hel (not Hell).
E; is the ionization potential,
y; is the power-law index for photoionization cross section at threshold,
ay; is the case-A recombination coefficient.




Heating/cooling terms
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lonization terms

m Atomic processes
- Before z*, case-B scenario

- ato B —FEyw /T, B
Tun = 4Cu [(1 — zy) P e u/Teme _ o o zyn OéH]

atom __ B —Fue1,s/TcMmB B
Trerr = 4 E :CHeII,s [Qs (X — THer) Biter,s€ / — NMH Te THell aHeI,S]

- Afterz < z*, case-A scenario

t A
e = na (1 — zuir) Te Lenr — N Te THIT Oy

m Dark matter energy injection
CHI {fH ion(2,X) | (1_CH)fexc(zax)] ( dE )i“j

mHII N EHTI,H 075EHTLH dV dt
DM _ freion(2,x) ( dE \™
Hell EHeInHe dV dt

xHeIII =0



Effects of including Helll

m Currently, DarkHistory
assumes there is never Helll

m However, still allows energy to
be deposited into the IGM by

1. Photoionization of
Hell = Helll + e-

2. Resulting electron
thermalizes with IGM

3. Does NOT keep track of
change to Hell and Helll
fractions

m This treatment is not self-
consistent; however, the effect
is small
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Uncertainty from
p-wave boost factor

m For p-wave, main contribution to 107°r
boost factor is from largest halos 10_8'

- Well studied by N-body =
simulations L 10"
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e i

m Uncertainty on boost factor is 31077 =
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Comparison to optical depth
constraints

: : Decay Constraint, y — eTe™
m Are the histories along our — ...X.., S X......., R

constraints excluded by their _
contribution to the optical depth? 107

- Planck 2018: For tanh
function reionization,
T = 0.051973:9939
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1024 \~___1_

m Temperature constraints are
comparable to ionization
constraints, and stronger in
many places
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Test statistics

m For the ‘conservative’ method, we use a modified chi-squared
that only penalizes data points that overheat the IGM

m Can also think of this as a standard chi-squared test with a
flexible background heating model

- Model contributes a non-negative amount to the
temperature at each measured redshift

m [n bins where contribution from DM is under
measurement, model is set to match data exactly

m In bins where contribution from DM exceeds
measurement, model is fixed to O

- # of model parameters = # of bins where DM is under is
under measurement

- Hence, degrees of freedom = # of bins where DM
exceeds measurement



