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Introduction

• Universe undergoes accelerating expansion =⇒ Many models of dark
energy (DE) e.g. Quintessence, P(X ), (beyond) Horndeski, etc.

• Gravitational wave (GW) observations =⇒ New test of GR and
modified gravity theories

• Use GW propagation (LIGO/Virgo) to constrain those DE models

Dark energy instabilities induced by gravitational waves August 20th, 2020



Dark enery models: Scalar-tensor theories

• One extra scalar field:

L = R − 1

2
X − V (φ) Quintessence

L = f (φ)R − 1

2
X − V (φ) Brans-Dicke

L = R − P(φ,X ) k-essence

X = gµν∂µφ∂νφ

Scalar fluctuation: φ = φ0(t) + π(t, x) leads to a sound speed cs

X 2 ⊃ φ2
0(t)π̇2 =⇒ Lπ ∼ π̇2 − c2

s (∂iπ)2

Dark energy instabilities induced by gravitational waves August 20th, 2020



Dark enery models: Scalar-tensor theories

• Most general scalar-tensor theories with 2nd order EoM:
(Beyond) Horndeski

L2 =G2(φ,X )

L3 =G3(φ,X )�φ

L4 =G4(φ,X )R − 2G4,X (φ,X )[(�φ)2 − φµνφµν ]

− F4(X , φ)εµνρσε
µ′ν′ρ′σφµφµ′φνν′φρρ′

L5 =G5(φ,X )Gµνφ
µν +

1

3
G5,X (φ,X )[(�φ)3 − 3(�φ)φµνφ

µν + 2φµνφ
σµφνσ]

− F5(φ,X )εµνρσεµ
′ν′ρ′σ′

φµφµ′φνν′φρρ′φσσ′

φµ ≡ ∇µφ
Horndeski 74, Deffayet et al. 11,

Zumalacárregui and Garćıa-Bellido 14, Gleyzes et al. 14
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Dark enery models

• The cosmological background φ0(t) spontaneously breaks Lorentz
invariance

• Interesting phenomena for tensor perturbation γij from second derivatives

For example

(∇µ∇νφ)2 ⊃ φ̇2
0γ̇

2
ij

Lγ ∼ γ̇2
ij − c2

T (∂lγij)
2
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EFT of Dark Energy

• Efficient way to study a perturbation
around fixed background

• Spontaneously break time
diffeomorphism

ds2 = −N2dt2 + hij(N
idt + dx i )(N jdt + dx j)

S =

∫
d4x
√
−g L[t;N,K i

j ,
(3)R, . . .] g00 = −N−2

• The action contains all possible invariances under 3d diffs

Cheung et al. 08,

Gubitosi et al. 12, and many others

Dark energy instabilities induced by gravitational waves August 20th, 2020



EFT of Dark Energy

SEFT =

∫
d4x
√
−g
[
M2
∗

2
f (t)(4)R − Λ(t)− c(t)g00

+
m2

2(t)

2
(δg00)2 − m3

3(t)

2
δKδg00 −m2

4(t)δK2 +
m̃2

4(t)

2
δg00(3)R

− m2
5(t)

2
δg00δK2 −

m6(t)

3
δK3 − m̃6(t)δg00δG2 −

m7(t)

3
δg00δK3

]
This term changes the speed of GWs

δK2 = δK 2 − δKµ
ν δK ν

µ⊃ γ̇2
ij , δKµ

ν = Kµ
ν − Hδµν

δG2 = δKµ
ν

(3)Rνµ − δK (3)R/2

δK3 = δK 3 − 3δKδKµ
ν δK ν

µ + 2δK ν
µδK

µ
ρ δK

ρ
ν
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GW170817 = GRB170817A

|c2
T − 1| . 10−15

LIGO/Virgo + Fermi/GBM + INTEGRAL 17
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EFT of DE after GW170817 & GRB170817A

• The speed of GWs can be expressed as

c2
T = 1− 2m2

4

M2
∗ f + 2m2

4

• c2
T = 1 ⇒ m2

4 = 0

• The EFT action becomes

LEFTcT =1 =
M2

Pl

2
f (t)(4)R − Λ(t)− c(t)g00 +

m2
2(t)

2
(δg00)2 − m3

3(t)

2
δKδg00

+
m̃2

4(t)

2
δg00((3)R − δK2)

Creminelli and Vernizzi 17,
Ezquiaga and Zumalacárregui 17,

Baker et al. 17, Sakstein and Jain 17
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Pertubative decay of GWs due to m̃2
4-term

• Spontaneous breaking of Lorentz
allows the decay

• m̃2
4: δg00((3)R − δK2) ⇔ Beyond

Horndeski (F4&F5)

• The interaction term:

Sγππ =
1

Λ3
?

∫
d4x γ̈ij∂iπ∂jπ , Λ3

? '
√

2
α

αH
Λ3

3

αH = 2m̃2
4/M

2
Pl, Λ3 = (MPlH

2
0 )1/3

• The perturbative decay rate: Γγ→ππ '
(
αH

Λ3
3

)2
ω7(1−c2

s )2

480πc7
s

Creminelli et al. 18
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Constraint from no pert. decay

• At LIGO/Virgo, take ω ∼ Λ3, Λ3 ∼ 10−13 eV

• Compare the decay rate with the cosmological distances ∼ H−1
0

Γγ→ππ
H0

∼ 1020α2
H

(1− c2
s )2

480πc7
s

. 1

H0 ∼ 10−33 eV

αH . 10−10 =⇒ beyond Horndeski is highly constrained

• Large occupation number of GWs =⇒ non-perturbative effect,
resonant π-production ?
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EFT of DE with constriants

Recap most general EFT action with c2
T = 1: S = S0 + Sm3 + Sm̃4

S0 =

∫
d4x
√
−g
[
M2

Pl

2
(4)R − λ(t)− c(t)g00 +

m4
2(t)

2
(δg00)2

]
Sm3 = −

∫
d4x
√
−g m3

3(t)

2
δKδg00 Cubic Horndeski

Sm̃4 =

∫
d4x
√
−g m̃2

4(t)

2
δg00

(
(3)R + δK ν

µδK
µ
ν − δK 2

)
Quartic beyond Horndeski

δg00 = 1 + g00, δKµ
ν = Kµ

ν − Hδµν
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Classification of instabilities

• L0 + Lm3 = 1
2 γ̇

2
ij −

1
2 (∂kγij)

2 + 1
2 π̇

2 − c2
s
2 (∂iπ)2 + 1

Λ2 γ̇ij∂iπ∂jπ

• Treat GW as a classical background: γij = MPlh
+
0 sin(ω(t − z))ε+

ij

• The Lagrangian of π reads

Lπ =
1

2
π̇2 − c2

s

2
(1− β)(∂iπ)2

where

β =
2ωMPlh

+
0

c2
s |Λ2|

, Λ2 ' − αΛ2
2√

2αB

, αB ≡ −
m3

3

2M2
PlH

β < 1: Resonant instability ⇒ Not applicable for m3 and
improve bound for αH (Creminelli, Tambalo, Vernizzi and VY 19)

β > 1: Gradient instability
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Gradient/Ghost instabilities (β > 1)

• Let’s consider

Lπ =
1

2

[
π̇2 − c2

s (∂iπ)2
]

+
1

Λ2
γ̇ij∂iπ∂jπ + . . .

=
1

2
π̇2 − c2

s

2
(1− β)(∂iπ)2 + NL self-couplings + Source terms

Generally, this leads to the gradient instability of π.

• Can the non-linearity quench the instability ?

• Study the stability at NL level with the bg. of π induced by GWs
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Classical stability conditions

• Consider a generic Lagrangian for π

Lπ
π=π̂+δπ−−−−−→ Lδπ = Zµν(x) ∂µδπ∂νδπ

• Free of instability ⇒ Conditions on Zµν

• Absence of ghost: Z 00 > 0

• Absence of gradient: Z 0iZ 0j − Z ijZ 00 positive definite

• Cubic Galileon w/o GWs: no ghost/gradient inst. for non-relativistic
source (Nicolis and Rattazzi 04)
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Instability in the presence of GWs

• The Lagrangian for π now is

L = −1

2
η̄µν∂µπ∂νπ −

1

Λ3
B

�π(∂π)2 +
1

Λ2
γ̇ij∂iπ∂jπ +

Λ3
B

2Λ4
πγ̇2

ij

η̄µν ≡ diag(−1, c2
s , c

2
s , c

2
s ), The parameter β ∼ γ̇ij/Λ2 > 1

• π = π̂ + δπ. The kinetic matrix Zµν for δπ is

Zµν ≡ −1

2
η̄µν − 2 (Kµν − ηµνK) +

γ̇µν
Λ2

, Kµν = − 1

Λ3
B

∂µ∂ν π̂

• The EoM for π̂ is

�̄π̂ − 2

Λ3
B

[
(∂µ∂ν π̂)2 −�π̂2

]
− 2

Λ2
γ̇µν∂

µ∂ν π̂ −
Λ3
B

2Λ4
γ̇2
µν = 0

Dark energy instabilities induced by gravitational waves August 20th, 2020



Instability in the presence of GWs

• The Lagrangian for π now is

L = −1

2
η̄µν∂µπ∂νπ −

1

Λ3
B

�π(∂π)2 +
1

Λ2
γ̇ij∂iπ∂jπ +

Λ3
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Instability in the presence of GWs with cs < 1

• Assume that γµν = γµν(u)

• One can solve the EoM for π̂ analytically

π̂′′(u) = −
Λ3
Bγ̇

2
µν

2(1− c2
s )Λ4

• The components of Zµν are

Z 00 =
1

2
+ 2

π̂′′(u)

Λ3
B

, Z 03 = Z 30 = 2
π̂′′(u)

Λ3
B

, Z 33 = −1

2
c2
s + 2

π̂′′(u)

Λ3
B

Z 11 = −1

2
c2
s +

γ̇11

Λ2
, Z 22 = −1

2
c2
s +

γ̇22

Λ2
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Phenomenological consequences

• Free of gradient int.: Z 11,Z 22 < 0 ⇒ β < 1

• Free of ghost int.: Z 00 > 0 ⇒ β2 < (1− c2
s )c−4

s

Free of instabilities: |αB| . 10−2

Dark energy instabilities induced by gravitational waves August 20th, 2020



Fate of the instability

• The instabiliy occurs: the fluctuation grows at rate of the cutoff

• What happens next to the instability relies on the UV completion, so
does the fate of γµν

• LIR = P(X ) with constant X
background ⇒ Ghost + gradient
inst.

• LUV = −|∂φ|2 − λ(|φ|2 − v2)2

φ = φ0e
iπ, 〈φ0〉 = v2 − X

2λ ,
X = (∂π)2

Ellis, et al. 15

All the modes are stable in the UV theory
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Conclusion

- Perturbative/Resonant decays of GWs ⇒ a strong bound on quartic
beyond Horndeski (αH)

- Ghost/Gradient instabilities of π in GWs bg. ⇒ a bound on Cubic
Horndeski (αB)

-The surviving scalar-tensor theory: gµν → C (φ,X )gµν

L = G2(φ,X ) + C (φ,X )R +
6C,X (φ,X )2

C (φ,X )
φ;µφ;µνφ;λφ

;νλ

- Fate of instability relies on the UV completion
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Backup
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Gradient-instability lines αB

• Gradient-instability lines, β = 1, for different value of αB as a function
of Mc of the binary system

• The black lines indicate frequencies ω > ΛUV
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Gradient-instability lines αH

• Gradient-instability lines, β = 1, for different value of αH as a function
of Mc of the binary system

• The black lines indicate frequencies ω > ΛUV
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Dark enery models

Extra scalar field: Lorentz violating medium ⇒ cT 6= 1
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Perturbative decay of GWs due to m3
3-term

• m3
3: δKδg00 ⇔ Cubic Horndeski G3

• The interaction term:

Sγππ =
1

Λ2

∫
d4x γ̇ij∂iπ∂jπ , Λ2 = − α√

2αB

Λ2
2

αB ≡ −m3
3/2M2

PlH

• The perturbative decay rate

Γγ→ππ '
(
αB

Λ2
2

)2 ω5(1− c2
s )2

480πc7
s

Γ/H0 . 1⇒ |αB| . 1010, Λ2 ∼ 10−3 eV
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Resonant decay of GWs

• In Fourier space fp satisfies the
Mathieu eq.

d2f

dτ2
+ [A− 2q cos(2τ)]f = 0

• fp ∼ eµkτ

• the exponent µ ∼ β for β < 1
(Narrow resonance)

• Need ∼ 700 cycles to reach
ρπ ∼ ργ

0

0.2

0.4

0.6

0.8

1.0
p

τ =
ωu

2
, Ω = pz/|p|

A = 4
c2
s p

2

ω2

(1− csΩ)2

(1− c2
s )2

q = 2β
c2
s p

2

ω2

(1− Ω2) cos(2φ)

1− c2
s
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Resonant decay of GWs

• EoM of π for m̃2
4-operator

π̈ − c2
s ∂

2π − β sin(ω(t − z))(∂2
x − ∂2

y )π = 0

• Light-cone coord.

d2f

dτ2
+ [A− 2q cos(2τ)]f = 0

π(u, x̃) ∼
∫

e i p̃·x̃ fp̃(u)âp̃ + h.c.

• fp ∼ eµkτ , µ ∼ β < 1 (Narrow
resonance)

°ij

¼

va
cu

um

vu

so
u
rc

e
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Observational signature for m̃4

• Modification of GWs signal: ∆γij ∼ −A exp(βωu/4)ε+
ij

• Effect of G4 (Quartic Galileon), Λ6
c ∼ Λ6

3/(αHc
4
s ) for m3

3 = 0

G4 =
1

Λ6
c

(∂π)2[(�π)2 − πµνπµν ] ∼ 1

Λ3
?

γ̈ij∂iπ∂jπ

We obtain

∆γ

γ̄
. (βNcyc)3/2(rH0)2 ≡

(
∆γ

γ̄

)
NL
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Observational signature for m̃4

/Virgo

f = 30 Hz,Mc = 1.2M�
GW170817,

40 Mpc (rH0 ∼ 5 · 10−3)

perturbative bound: αH . 10−10
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What about the resonant effect from m3
3-term ?

• One can run the same procedure with m3
3δKδg

00

m3
3δKδg

00 ⊃ 1

Λ2
γ̇ij∂iπ∂jπ , Λ2 ' − αΛ2

2√
2αB

αB ≡ −m3
3/(2M2

PlH), β = 2ωMPlh
+
0 /(c2

s |Λ2|), Λ2 ∼ 10−3 eV

• Once the resonance happens (β < 1), the cubic self-interaction quickly
becomes important

G3 ∼
1

Λ3
B

�π (∂iπ)2 , Λ3
B ∼ α−1

B Λ3
3

• No sizable effect on GWs signal: ∆γ/γ̄ � 1 ⇒ Need to study β > 1
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3δKδg

00

m3
3δKδg

00 ⊃ 1

Λ2
γ̇ij∂iπ∂jπ , Λ2 ' − αΛ2

2√
2αB

αB ≡ −m3
3/(2M2

PlH), β = 2ωMPlh
+
0 /(c2

s |Λ2|), Λ2 ∼ 10−3 eV

• Once the resonance happens (β < 1), the cubic self-interaction quickly
becomes important

G3 ∼
1

Λ3
B

�π (∂iπ)2 , Λ3
B ∼ α−1

B Λ3
3

• No sizable effect on GWs signal: ∆γ/γ̄ � 1

⇒ Need to study β > 1
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Vainshtein effect on the instability

• Suppose π̂ is generated by a non-relativistic astrophysical object. The
object possibly gives a large kinetic matrix Z for δπ and healthy (shown by
Nicolis & Rattazzi) within rV (∼ kpc). One sees that within this region
the coupling δπT is suppressed and GR is recovered at small scales
(non-linear).

• Can this happen to the instability induced by GWs ? Suppose again π̂ is
sourced by an astrophysical object. δπ seems to acquire a large Z . The
parameter β of γππ seems to get suppressed due to a large Z and the
instability might be stopped by this screening mechanism. But this is not
the case for the GWs traveling over the cosmo. distances (� the typical
rV ) since at large distances one expects the linear perturbation theory is
recovered, so that the Vainshtein mechanism is negligible. Hence, the
argument of having large Z to suppress the instability is not applicable in
the presence of GWs traveling over cosmo. distances and the instability
still remains active.
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Fate of instability

• Once the instability happens, a huge amount is damped into π’s until
their backreaction stops the instability. Now it’s quite hard to imagine the
new π state will resemble to the original one and make the same
predictions. We expect the unstable π’s at some point make the thoery
healthy again but this would affect the other predictions of the theory.

• It might be that EFT breaks down at instability and one cannot make
prediction unless UV is known. But the frequency of π’s can be as low as
1010 km that means the small scale experiment cannot be explained by
this EFT.
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Instability of plane wave π̂

• Let π̂ = Af (u) (consider u-direction)

• �π̂(u) = −4∂u∂v π̂(u) = 0

• ∂2
t π̂(u) = Af ′′(u), ∂2

z π̂(u) = Af ′′(u), ∂t∂z π̂(u) = −Af ′′(u)

• Without GWs: Zµν ≡ −1
2η

µν − 2 (Kµν − ηµνK), we have

Z 00 =
1

2
+ 2

Af ′′(u)

Λ3
B

, Z 33 = −1

2
+ 2

Af ′′(u)

Λ3
B

, Z 03 = 2
Af ′′(u)

Λ3
B

Z 11 = Z 22 = −1/2

• Ghost: Z 00 < 0⇒ Af ′′ < −Λ3
B/4.

• No gradient: Z 11,Z 22 < 0 and (Z 03)2 − Z 33Z 00 = 1/4 > 0

• Non-diagonalizable Zµν : 2|Z 03| = |Z 00 + Z 33| (avoid the theorem)
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Observational signature for m̃4

• For a binary system (Mc , f , r): h+
0 ∼ 10−3/(fNcycr)

• Sizeable effect in GW waveform requires exp(βωu/4) ∼ O(102)

∆γ

γ̄
> 0.1 ⇒ αH & 10−17 · rH0 ·

Λ3

2πf
αc2

s

• Our calculation is valid when β < 1

αH .
H0

f
· Ncyc · rH0 , Ncyc ∼ (GMc f )−5/3

• To neglect effect of NL, demands (∆γ/γ̄)NL > 0.1

αH &
H0

f
(rH0)1/3
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c2
T = 1 from GW170817 & GRB170817A

LEFTcT =1 =
M2

Pl

2
f (t)(4)R − Λ(t)− c(t)g00 +

m2
2(t)

2
(δg00)2 − m3

3(t)

2
δKδg00

+
m̃2

4(t)

2
δg00((3)R − δK2)

In the covariant theory

LcT =1 = G2(φ,X ) + G3(φ,X )�φ+ B4(φ,X )(4)R

− 4

X
B4,X (φ,X )(φµφνφµν�φ− φµφµνφλφλν)

B4 ≡ G4 + XG5,φ/2
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Summary of the results

EFT of DE operator 1
2m̃

2
4 δg

00
(

(3)R + δK ν
µδK

µ
ν − δK 2

)
m3

3 δg
00δK

GLPV theories with cT = 1

L = G2 + G3�φ+ B4R −
4B4,X

X (φ;µφ;νφ;µν�φ− φ;µφ;µνφ;λφ
;λν)

−2XB4,X

B4

2XB4,X

B4
+

φ̇XG3,X

2HB4

Dimensionless function αi αH αB

Perturbative decay (Γγ→ππ/H0 > 1) |αH| & 10−10 Irrelevant (|αB| & 1010)

Narrow resonance (β < 1, βωu > 1)
3× 10−20 . |αH| . 10−17 with LIGO-Virgo

10−16 . |αH| . 10−10 with LISA

Not applicable

(large non-linearities)

Instability (β > 1, βω > 1) |αH| & 10−20 |αB| & 10−2

The surviving scalar-tensor theory: gµν → C (φ,X )gµν

L = G2(φ,X ) + C (φ,X )R +
6C,X (φ,X )2

C (φ,X )
φ;µφ;µνφ;λφ

;νλ
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Stability in the absence of GWs

Here the Lagrangian is

L = −1

2
ηµν∂µπ∂νπ −

1

Λ3
B

�π(∂π)2 +
πT

2MPl

• π = π̂ + δπ, the EoM for π̂ is

K + 2
(
KµνKµν −K2

)
=

T

2MPlΛ
3
B

, Kµν = − 1

Λ3
B

∂µ∂ν π̂

• The kinetic matrix reads: Lδπ = Zµν∂µδπ∂νδπ

Zµν ≡ −1

2
ηµν − 2 (Kµν − ηµνK)

Nicolis and Rattazzi 04
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Stability in the absence of GWs

• In terms of Zµν the EoM of π̂ becomes

1

3
Z 2 − (Zµν)2 =

1

3
− T

MPlΛ
3
B

• For the non-relativistic source v � 1, the matrix Zµν is diagonalizable
with a Lorentz boost, so that Zµν = diag(z0, z1, z2, z3) and T ' −ρ ≤ 0

• Consider the plane z0 = 0 in zi -space

−1

3

[
(z1 − z2)2 + (z1 − z3)2 + (z2 − z3)2

]
=

1

3
+

ρ

MPlΛ
3
B

⇒ A solution crossing the plane doesn’t exist

⇒ The initial stable solution (Zµν = −ηµν/2) remains stable everywhere

Dark energy instabilities induced by gravitational waves August 20th, 2020



DGP - Self-accelerating Universe

• Cubic Gal. (∂π)2�π is inspired by the DGP model

• 5d gravity theory (∞-extra dim) - Bulk is Mink5

• Two branches on the brane: self-accelerating and FRW (normal)

4M2
4 (Rµν −

1

2
gµνR)− 4M3

5 (Kµν − gµνK ) = Tµν

⇒ Acceleration happens w/o cosmological constant

• The brane bending mode π becomes ghost in self-accelerating branch

Dvali, Gabadadze and Porrati 2000,

Luty et al. 2003 and many others
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DGP - Instability of π

• Study an instability of π in the presence of GWs

• Consider a curved 5d spacetime GMN and GMN = ḠMN + HMN

• On the boundary, Sbdy = S4dEH + SIn5dEH + SIn5dGF and Hµν | = hµν ,

Hµy | = ∂µπ, Hyy | = −24̄π, 4̄ =
√
−D̄2

S
(2)
bdy ⊃ M3

5π(K̄µνD̄µD̄ν − K̄ D̄2)π

neglecting K̄h2, K̄h4̄π at high energy limit

⇒ In the presence of GWs bg. Ḡµν , the instability of π is solely
determined by K̄µν ∼ 4̄Ḡµν +∇µNν

How large is this new piece ?

in progress
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DGP - Modification of Green function

• To tackle this problem, let’s consider a propagator of a massless scalar
field on the brane

GE (p) ∼ 1

p2 + 2κp
, p =

√
p2

4 + p2

The linear in p is due to the induced action on the brane.

• The y -derivative of Lorentzian Green function in terms of (ω, r) is

∂yG (ω, r) ∼ κG (ω, r) +
ω2

(ωr)3/2
e−iωr

⇒ Both terms are suppressed in the limit ωr � 1

Any other example where
the modification of propagator is sizeable ?

in progress
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Some formulas

Canonical normalizations

πc ≡
√
αMPlHπ , γcij ≡

MPl√
2
γij . (1)

α ≡
4M2

Pl(c + 2m4
2) + 3m6

3

2M4
PlH

2
(2)

c2
s =

2

α

[
(1 + αH)2 c

M2
PlH

2
+ αH + αH(1 + αH)

Ḣ

H2

]
(3)

αB : scalar-gravity mixing, αH : scalar-matter mixing.
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(beyond) (beyond) Horndeski

gµν → C (φ,X )gµν + D(φ,X )∂µφ∂µφ (4)

• Horn is preserved under this transf. with C (φ) and D(φ)

• If D = D(φ,X ) =⇒ Beyond Horn. which is preserved under this with
C (φ) and D(φ,X )

• If C = C (φ,X ) =⇒ DHOST

Beyond Hondeski structure is preseved under disformal tranf.
gµν → C (φ)gµν + D(φ,X )∂µφ∂µφ. Once we perform this field redefinition
(the disformal coefficient D depends on derivative of φ) we obtain a
kinetic mixing between scalar and matter: αH
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Some formulas
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The narrow resonance

• Boltzmann equation: φ→ χχ

1

a3

d(a3nχ)

dt
=

2

V
Γφ→χχ[(nχk + 1)(nχ−k + 1)nφ0 − nχk n

χ
−k(1 + nφ0 )]

' 2Γφ→χχnφ(1 + 2nχk )

nχk=m/2 '
nχ

(4πk2
0 ∆k)/(2π)3

' π2Φ

g

nχ
nφ

nχ ∝ exp(
π2gΦ

m2
N) ∝ exp(2πµBN)

N = mt/2π , µB ≡
πgΦ

2m2

Mukhanov 05
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