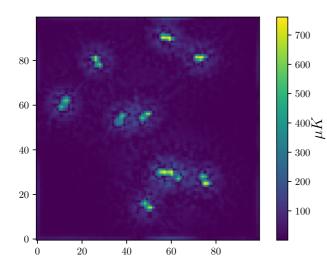
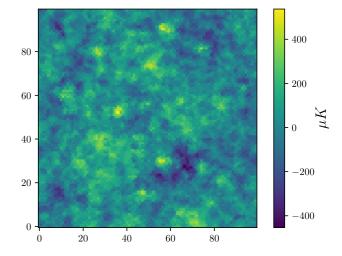


Cosmological Particle Production and Pairwise Hotspots on the CMB



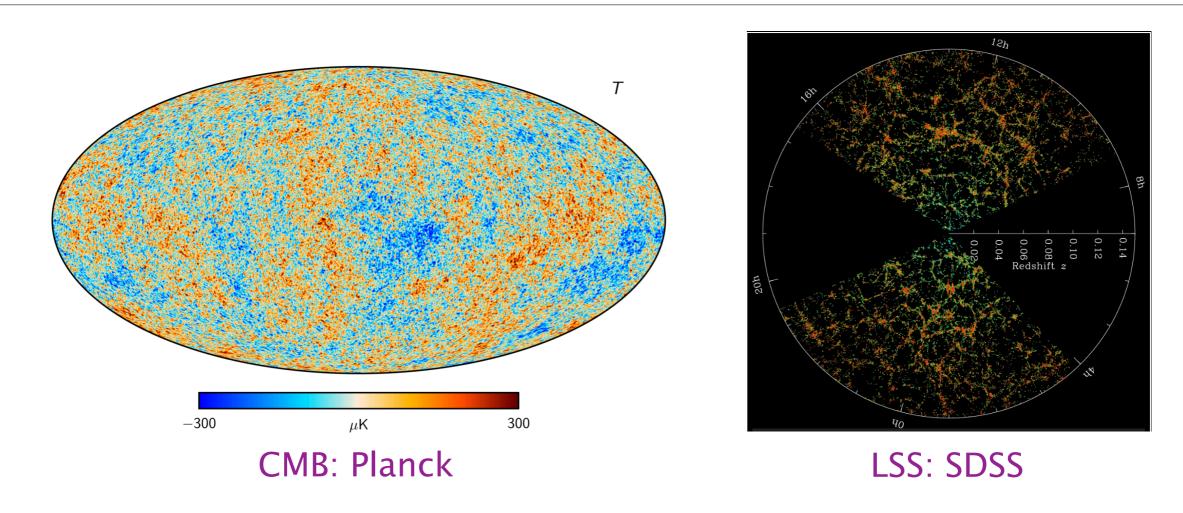
Soubhik Kumar University of Maryland/UC Berkeley & LBNL soubhik@terpmail.umd.edu

Work in progress with Jeonghan Kim, Adam Martin and Yuhsin Tsai



Cosmology from Home 2020 Aug 24 – Sep 04

Cosmic probes



• Cosmic Inflation: leading paradigm for explaining fluctuations in CMB and LSS.

Features of primordial perturbations

- Standard inflationary paradigm: fluctuations of inflaton ϕ seeds the density fluctuations in CMB and LSS.
- Simplest models predict density fluctuations should be:
 - (almost) scale invariant
 - adiabatic

Planck '18

• Gaussian

Features of primordial perturbations

- Standard inflationary paradigm: fluctuations of inflaton ϕ seeds the density fluctuations in CMB and LSS.
- Simplest models predict density fluctuations should be:
 - (almost) scale invariant

___ Focus on this property

adiabatic

Planck '18

• Gaussian

for refs.

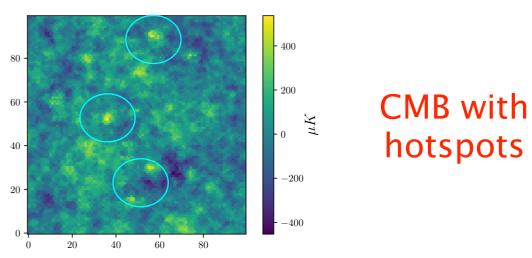
Violation of scale invariance

- Has been extensively discussed before:
 - massive fields $m \gtrsim H_{inf}$; monodromy can cause modulations in power spectrum. See Planck '18
 - sharp features in the inflationary potential \rightarrow features in power spectrum.
 - A different kind: time non-invariant production of $m \gg H_{inf}$ particles.

Basic idea of the talk

- At some particular time t_∗ during slow-roll inflation, an ultra-heavy particle σ becomes much lighter → efficient cosmological production.
- If σ doesn't immediately decay → due to its typically-high mass, it can create localized "dents" in the metric → hotspots on the CMB: break in scale invariance.

Hard to detect via the momentum space power spectrum, but easily detectable in position space!



Outline of the talk

- Theoretical set-up.
- Properties of hotspots on the CMB.
- Detection strategies.
- Conclusion.

Outline of the talk

- Properties of hotspots on the CMB.
- Detection strategies.
- Conclusion.

Set-up

• A simple model

$$V(\phi,\sigma) = V_{\text{inf}}(\phi) + \frac{1}{2} \left(M_0^2 + (g\phi - M)^2 \right) \sigma^2 \quad \text{with} \quad M \sim g\phi \gg M_0$$

• σ -mass is time-dependent, and typically large, but for $g\phi \approx M$, effective mass

$$M_{\rm eff}^2 \equiv M_0^2 + (g\phi - M)^2 \approx M_0^2 \ll M^2$$

. For $M_0 \sim \sqrt{\dot{\phi}_0} \sim 60 H_{\rm inf}$, the kinetic energy of the inflaton can be used to produce σ .

Calculating particle production

- We estimate the number of particles produced using the standard Bogoliubov method.
 Kofman et. al.
 - Kofman et. al. hep-ph/9704452 Chung et. al. hep-ph/9910437
- A standard evaluation gives the probability of particle production

$$|\beta_k|^2 = e^{-\frac{\pi k^2 |\eta_*|H}{|g\dot{\phi}|}} e^{\frac{\pi (M_0^2 - 2)}{|g\dot{\phi}|}} \quad \text{``Boltzmann'' suppression}$$

whenever energy of particle is bigger than $\sim \sqrt{g\dot{\phi}_0}$

Effects of produced particles

Produced heavy particle backreacts on spacetime: Maldacena

$$S_{\text{particle}} = \int dt \sqrt{-g_{00}} M_{\text{eff}} \supset \int d\eta \,\partial_{\eta} \zeta \, \frac{M_{\text{eff}}(\eta)}{H}$$

1508.01082 Fialkov et. al. 0911.2100

with ζ = comoving curvature perturbation

• Gives rise to a non-trivial one-point function,

$$\langle \zeta_k(\eta_0 \to 0) \rangle = -i \int_{\eta_*}^0 d\eta \langle 0 | \zeta_k(\eta_0) \partial_\eta \zeta_k(\eta) | 0 \rangle \frac{M_{\text{eff}}(\eta)}{H} + \text{c.c.}$$

• The final position space profile of the result: size of typical inflationary

$$\langle \zeta(r) \rangle = \begin{cases} \left[\frac{M_{\text{eff}}(\eta = -r)}{2\sqrt{2\epsilon}M_{pl}} \right] \frac{H}{2\pi\sqrt{2\epsilon}M_{pl}}, & \text{if } |r| \leq |\eta_*| \\ 0, & \text{size of the hotspot} & \text{if } |r| > |\eta_*| \\ 0, & \text{size of the hotspot} & \text{if } |r| > |\eta_*| \\ \text{smaller than comoving} & \text{horizon at } n_* \end{cases}$$

Soubhik Kumar

We can wonder about ...

• How many hotspots do we expect to see?

• How large and hot is each hotspot?

• How are the hotspots distributed?

Outline of the talk

- Theoretical set-up.
- Properties of Hotspots on the CMB.
- Detection Strategies.
- Conclusion.

How many hotspots?

Integrate
$$|\beta_k|^2$$
: $n = \int d^3 \mathbf{k} |\beta_k|^2$

• Number of hotspots within the CMB horizon k_{CMB} with k_* being the scale that exits the horizon at η_* ,

$$N_{\text{hotspots}} = \frac{1}{8\pi^3} \left(\frac{g\dot{\phi}}{H^2}\right)^{3/2} e^{-\frac{\pi(M_0^2 - 2)}{|g\dot{\phi}|}} \left(\frac{k_*}{k_{\text{CMB}}}\right)^3$$

denotes the usual volume dilution

• Benchmark: g = 1, $M_0 = 2(g\dot{\phi})^{1/2}$:

 $N_{\text{hotspots}} \approx 3000 \text{ for } k_* = 100 k_{\text{CMB}} \text{ i.e. } l \approx 100$

How large and hot is a hotspot?

$$\left\langle \zeta(r) \right\rangle = \begin{cases} \left[\frac{M_{\text{eff}}(\eta = -r)}{2\sqrt{2\epsilon}M_{pl}} \right] \frac{H}{2\pi\sqrt{2\epsilon}M_{pl}}, & \text{if } r \leq |\eta_*| \\ 0, & \text{if } r > |\eta_*| \end{cases}$$

• For $r \leq |\eta_*|$ we can approximate $M_{\rm eff}(\eta) \approx g(\phi - \phi_*)$, which gives,

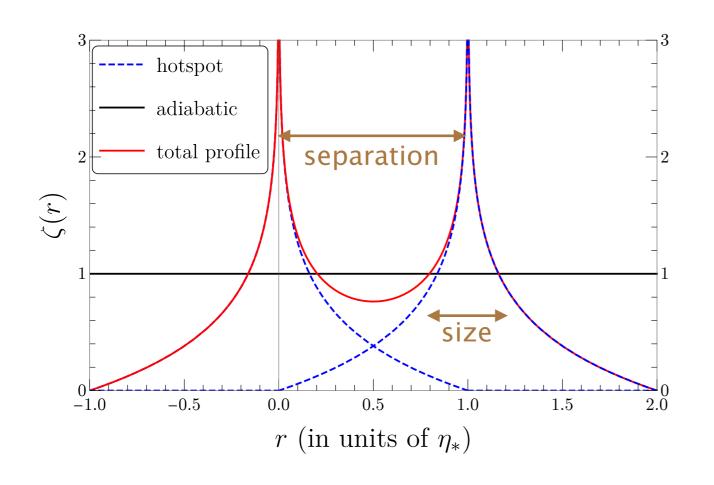
$$\langle \zeta(r \leq |\eta_*|) \rangle \approx \left[\frac{g}{2} \log \left(\frac{r}{|\eta_*|} \right) \right] \frac{H}{2\pi \sqrt{2\epsilon} M_{pl}}$$

size of typical inflationary fluctuation $\equiv \sqrt{A_s}$

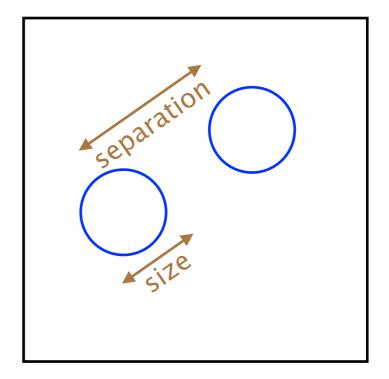
• Hence hotspot size $\sim |\eta_*|$ and the amplitude g controls the visibility over the random CMB fluctuation.

How are the hotspots distributed?

• Heavy particles are produced from fluctuating spacetime \rightarrow they always come in pairs: momentum conservation



simplified view



Outline of the talk

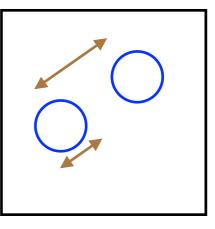
- Theoretical set-up.
- Properties of Hotspots on the CMB.

• Detection Strategies.

• Conclusion.

Parametrizing the pair-wise signal

Single hotspot: amplitude and size



- For pairs, a third parameter: separation between hotspots.
- Position space methods best suited \rightarrow use Wavelet Analysis. delocalization of nosition space already used by

position space peaks when Fourier transforming already used by Planck for point source detection

200

100

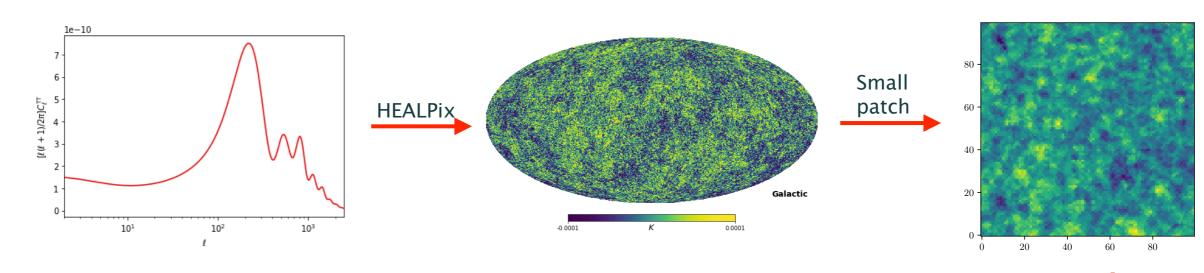
100 H

-200

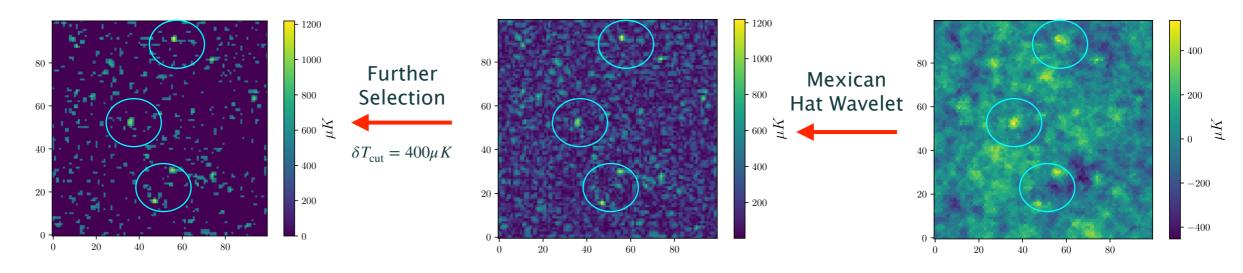
-300

-400

Analysis pipeline

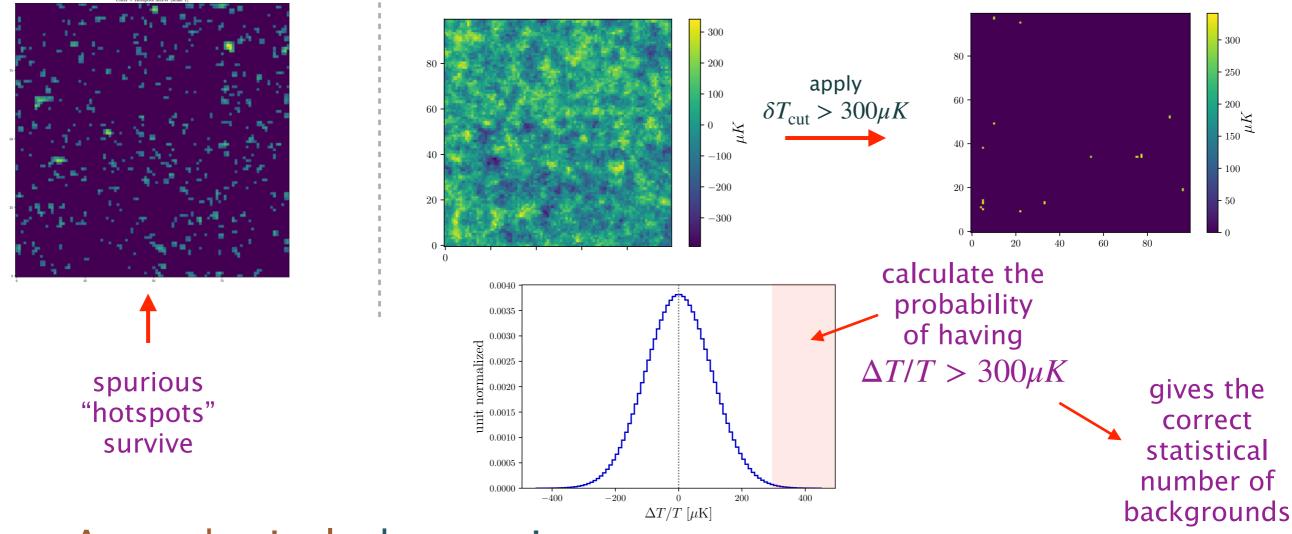


Signal-to-Noise > 2 can already be achieved



Estimating backgrounds preliminary

• Statistical: originating from CMB itself. Focus



• Astrophysical: dust, point sources etc. In progress comparison b/n different frequency channels might help

Soubhik Kumar

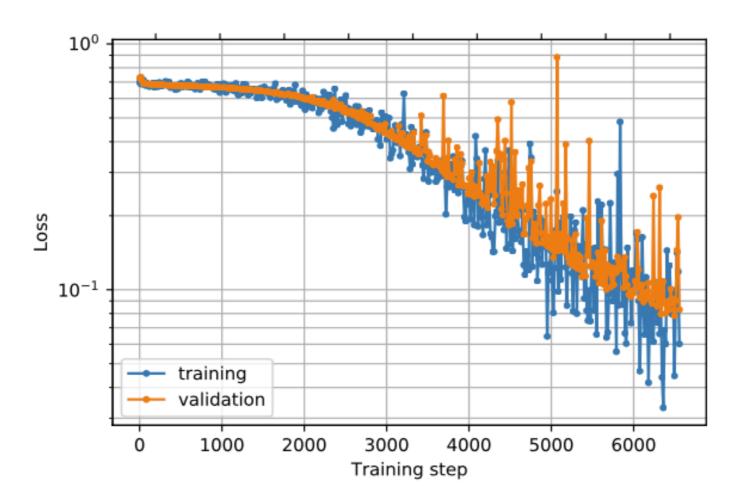
Conclusions

- Described a simple model for particle production and calculated effect on metric perturbation.
- The number of hotspots can be significant and be observable.
- Position space methods such as wavelet analysis can be very useful.
- Work on optimizing detection strategy ongoing.

Thank you!

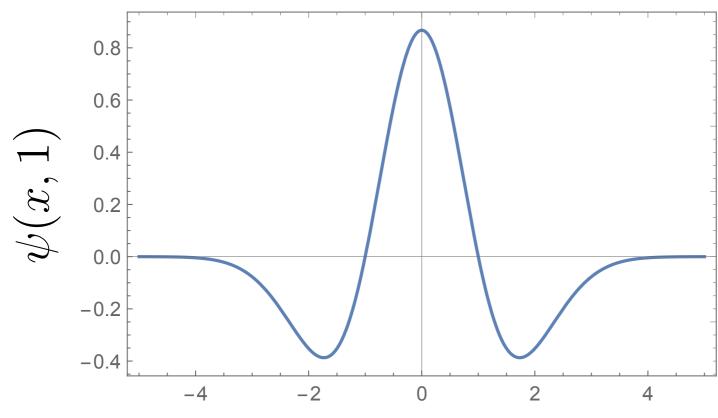
Using of machine learning (ongoing)

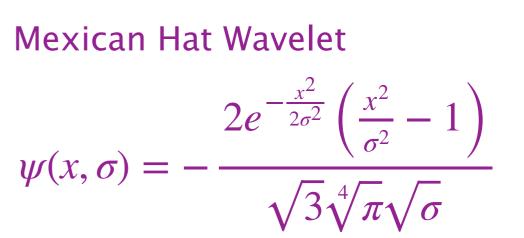
 Treat as a classification problem between images with and without hotspots using DeepSphere



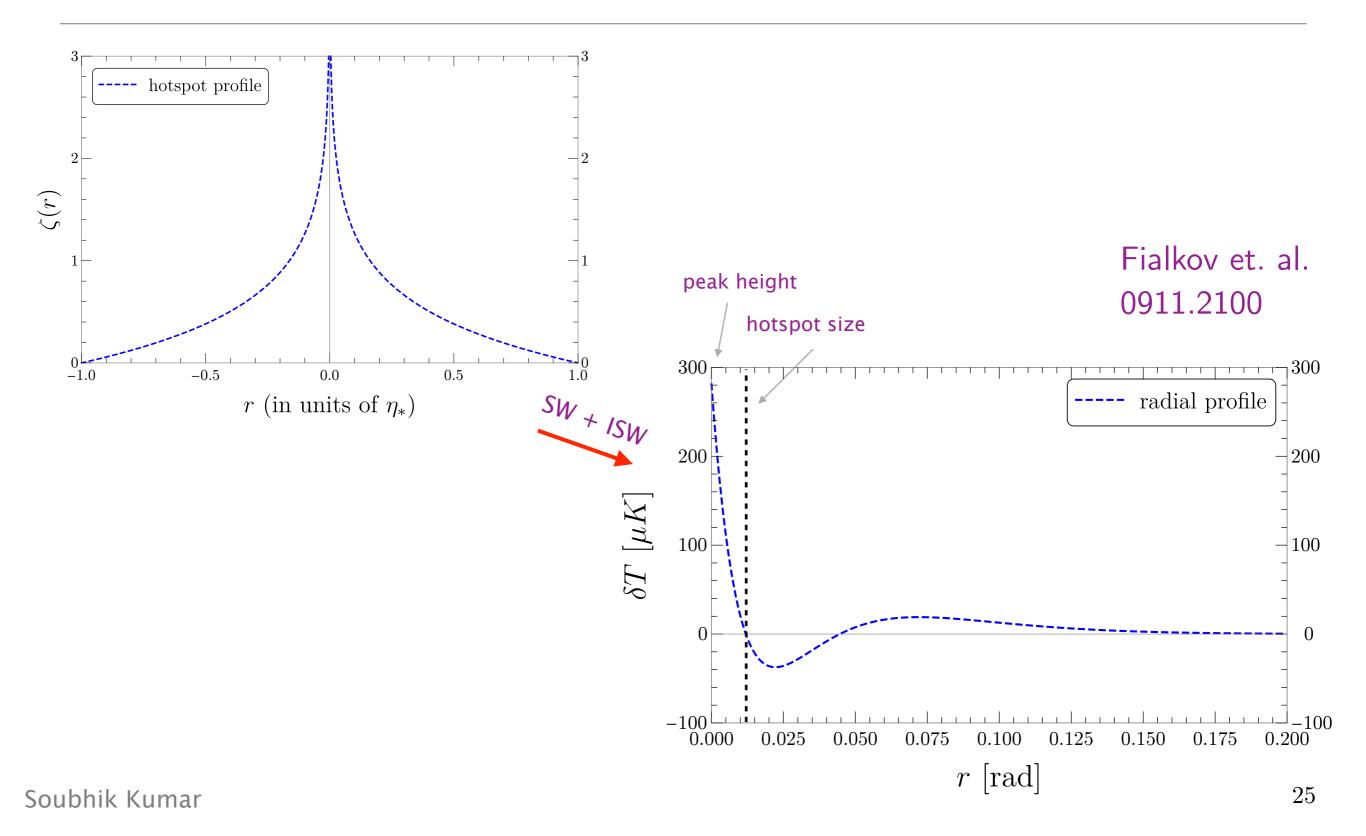
Description of wavelets

- Fourier transforms: not ideal to characterize sudden changes in data or images.
- Wavelets are localized. By scaling and translating a wavelet, we can characterize sudden changes aptly.





Temperature profile



Calculating particle production

• Simplify: study the evolution of mode function around conformal time η_* when $\phi \approx \phi_* \equiv M/g$:

$$\frac{d^2 u}{d\eta^2} + \left(k^2 + \frac{(g^2 \phi'^2 (\eta - \eta_*)^2 + M_0^2)/H^2 - 2}{\eta_*^2}\right)u = 0$$

$$|\beta_k|^2 = e^{-\frac{\pi k^2 |\eta_*|H}{|g\phi|}} e^{-\frac{\pi (M_0^2 - 2)}{|g\phi|}}$$