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ABSTRACT

The H0LiCOW collaboration inferred via strong gravitational lensing time delays a Hubble constant value of H0 = 73.3+1.7
�1.8 km s�1Mpc�1,

describing deflector mass density profiles by either a power-law or stars (constant mass-to-light ratio) plus standard dark matter halos. The mass-
sheet transform (MST) that leaves the lensing observables unchanged is considered the dominant source of residual uncertainty in H0. We quantify
any potential e�ect of the MST with a flexible family of mass models that directly encodes it and are hence maximally degenerate with H0. Our
calculation is based on a new hierarchical Bayesian approach in which the MST is only constrained by stellar kinematics. The approach is validated
on mock lenses generated from hydrodynamic simulations. We first apply the inference to the TDCOSMO sample of 7 lenses (6 from H0LiCOW)
and measure H0 = 74.5+5.6

�6.1 km s�1Mpc�1.
Secondly, in order to further constrain the deflector mass density profiles, we add imaging and spectroscopy for a set of 33 strong gravitational lenses
from the SLACS sample. For 9 of the 33 SLAC lenses, we use resolved kinematics to constrain the stellar anisotropy. From the joint hierarchical
analysis of the TDCOSMO+SLACS sample, we measure H0 = 67.4+4.1

�3.2 km s�1Mpc�1. This measurement assumes that the TDCOSMO and SLACS
galaxies are drawn from the same parent population. The blind H0LiCOW, TDCOSMO-only and TDCOSMO+SLACS analyses are in mutual
statistical agreement. The TDCOSMO+SLACS analysis prefers marginally shallower mass profiles than H0LiCOW or TDCOSMO-only. Without
relying on the form of the mass density profile used by H0LiCOW, we achieve a ⇠5% measurement of H0. While our new hierarchical analysis
does not statistically invalidate the mass profile assumptions by H0LiCOW – and thus their H0 measurement relying on those – it demonstrates
the importance of understanding the mass density profile of elliptical galaxies. The uncertainties on H0 derived in this paper can be reduced by
physical or observational priors on the form of the mass profile, or by additional data. The full analysis is available � here.
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1. Introduction

There is a discrepancy in the reported measurements of the Hub-
ble constant from early universe and late universe distance an-
chors. If confirmed, this discrepancy would have profound conse-
quences and would require new/unaccounted physics to be added
to the standard cosmological model. Early universe measure-
ments in this context are primarily calibrated with sound hori-
zon physics. This includes the Cosmic Microwave Background
(CMB) observations from Planck with H0 = 67.4 ± 0.5 km
s�1Mpc�1(Planck Collaboration et al. 2018), galaxy clustering
and weak lensing measurements of the Dark Energy Survey
(DES) data in combination with Baryon Acoustic Oscillations
(BAO) and Big Bang Nucleosynthesis (BBN) measurements, giv-
ing H0 = 67.4± 1.2 km s�1Mpc�1(Abbott et al. 2018), and using
the full-shape BAO analysis in the BOSS survey in combination
with BBN, giving H0 = 68.4 ± 1.1 km s�1Mpc�1(Philcox et al.
2020). All these measurements provide a self-consistent picture
of the growth and scales of structure in the Universe within the
standard cosmological model with a cosmological constant, ⇤,
and cold dark matter (⇤CDM).

Late universe distance anchors consist of multiple di�erent
methods and underlying physical calibrators. The most well es-
tablished is the local distance ladder, e�ectively based on radar
? E-mail: sibirrer@stanford.edu

observations on the Solar system scale, the parallax method and
a luminous calibrator to reach the Hubble flow scale. The SH0ES
team, using the distance ladder method with SNe Ia and Cepheids,
reports a measurement of H0 = 74.0 ± 1.4 km s�1Mpc�1(Riess
et al. 2019). The Carnegie–Chicago Hubble Project (CCHP) us-
ing the distance ladder method with SNe Ia and the Tip of the Red
Giant Branch measures H0 = 69.6±1.9 km s�1Mpc�1(Freedman
et al. 2019, 2020). Huang et al. (2020) are using the distance lad-
der method with SNe Ia and Mira variable stars and measure
H0 = 73.3 ± 4.0 km s�1Mpc�1.

Among the measurements that are independent of the dis-
tance ladder are the Megamaser Cosmology Project (MCP),
which uses water megamasers to measure H0 = 73.9 ± 3.0 km
s�1Mpc�1(Pesce et al. 2020), gravitational wave standard sirens
with H0 = 70.0+12.0

�8.0 km s�1Mpc�1(Abbott et al. 2017) and the
TDCOSMO collaboration1 (formed by members of H0LiCOW,
STRIDES, COSMOGRAIL and SHARP), using time-delay cos-
mography with lensed quasars (Wong et al. 2020; Shajib et al.
2020; Millon et al. 2019).

Time-delay cosmography (Refsdal 1964) provides a one-step
inference of absolute distances on cosmological scales – and
thus the Hubble constant. Over the past two decades, extensive
and dedicated e�orts have transformed time-delay cosmography

1 http://tdcosmo.org
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ring. This configuration allows for a very similar analysis as recently
applied for quadruply lensed quasars (Suyu et al. 2010, 2014; Birrer
et al. 2016; Wong et al. 2017). We expect that many similar examples
with relatively high surface brightness parts of quasar host galaxy
crossing the inner caustic can be found as hundreds of doubles are
discovered, and thus our analysis can serve as a pathfinder for much
larger samples.

We self-consistently incorporate new high resolution HST
imaging data with existing kinematics data of Agnello et al. (2016),
quasar light curves monitoring data of Eulaers et al. (2013) (here-
after, E13), and a LOS analysis in a Bayesian hierarchical model.
We provide the full likelihood of the cosmographic analysis that en-
ables a self-consistent combined analysis with other strong lenses
and other cosmographic probes. We also provide a new determina-
tion of the Hubble constant, independent of the local and inverse
distance ladder method. Finally, since our new blind measurement
is consistent with the previous H0LiCOW collaboration measure-
ments, we combine the likelihood from the four lenses to provide
an updated TDSL measurement of the Hubble constant with ⇠ 3
per cent precision in a flat ⇤CDM cosmology.

The paper is structured as follows: In Section 2, we describe
the basics of time-delay cosmography and outline the steps of our
analysis. Section 3 describes the lens system SDSS 1206+4332 and
the data used in our analysis. We describe the model choices and
di�erent options we assess in our analysis in Section 4. We then go
through the forward modelling of the di�erent data sets in Section 5.
Section 6 describes the LOS analysis. We describe the combined
Bayesian hierarchical analysis in Section 7. We present our results
in Section 8 and summarize our work in Section 9.

Crucially, the analysis presented in this work through Section 2
- 7 was laid out and executed blindly with respect to the cosmo-
graphic result and in particular the value of the Hubble constant.
The blinding is built in the software, by subtracting the average of
every posterior distribution function before revealing it to the in-
vestigator. The scripts and pipelines are then frozen before the cos-
mological inference is unblinded. We displayed the cosmographic
likelihood and the inference of the cosmological parameters only
after all co-authors involved in the time-delay analysis have agreed
that the analysis was satisfactory. The submission of this manuscript
followed shortly after the unblinding with only minor changes in the
text for clarity and updated figures.

The analysis and the lens modelling are performed with the
publicly available software �����������3 (Birrer & Amara 2018;
Birrer et al. 2015) version 0.3.3 and the reduced data products
and the lens modelling scripts are made publicly available after
acceptance of the manuscript.

2 OUTLINE OF THE ANALYSIS

We combine time-delay measurements between the two images of
the quasar, �tAB, Hubble Space Telescope (HST) imaging data,
dHST, stellar kinematics of the deflector galaxy, �P, and wide field
imaging and spectroscopy of the environment of the lens, denv, to
measure angular diameter distances and hence the Hubble constant.
We specifically denote dHST as the data vector of individual pixel
values of the imaging data and denv the collection of objects with
their photometric and spectoscopical measurements.

3 https://lenstronomy.readthedocs.io

This section outlines our analysis. We describe the observ-
ables and how they relate to the underlining cosmological model
(Section 2.1), highlight the cosmographic constraining power of the
combined data sets (Section 2.2), layout the formal notation of the
combined Bayesian analysis of this work (Section 2.3), and highlight
our strategy in regards to lensing degeneracies and other potential
systematics (Section 2.4). The details of the modelling choices are
presented in Sections 4 and 5.

2.1 Observables

The excess time delay (see e.g. Schneider et al. 1992) of an image at
✓ with corresponding source position � relative to an unperturbed
path is

t(✓, �) = (1 + zd)
c

DdDs
Dds

 (✓ � �)2
2

�  (✓)
�
, (1)

where zd is the redshift of the deflector, c the speed of light,  the
lensing potential and Dd, Ds and Dds the angular diameter distances
from the observer to the deflector, from the observer to the source
and from the deflector to the source, respectively.

The relative time delay between two images A and B is

�tAB =
D�t

c
[�(✓A, �) � �(✓B, �)] , (2)

where

�(✓, �) =
 (✓ � �)2

2
�  (✓)

�
(3)

is the Fermat potential and

D�t ⌘ (1 + zd)
DdDs
Dds

(4)

is the so-called time-delay distance.
The lensing potential,  , and the true source position, �, re-

quired for the prediction of the time delay, can be inferred by mod-
elling the appearance of multiply imaged structure in high resolution
imaging data, dHST. Comparison with the data allows us to constrain
the parameters of the lens model, ⇠ lens, and the parameters of the
surface brightness distribution of the deflector and lensed source
model, ⇠ light, and their covariances.

The details of the mass distribution along the LOS can signif-
icantly impact observables and thus need to be taken into account
(see e.g. McCully et al. 2017; Rusu et al. 2017; Sluse et al. 2017;
Birrer et al. 2017a; Tihhonova et al. 2018). Large scale structure
primarily introduces second order distortions in the form of shear
and convergence. Perturbers very close to the LOS of the main
lens can induce higher order perturbations (flexion and beyond) that
need to be modelled explicitly to accurately account for their e�ect
on the observables. In our analysis, we model the nearest massive
galaxies explicitly while the larger scale structure is accounted by a
convergence and an external shear term (see Wong et al. 2017, for
a similar approach).

The LOS convergence e�ectively alters the specific angular
diameter distances relevant to the lensing system, D

0, relative to the
homogeneous background metric, D

bkg. We take into account the
external convergence factor, ext, perturbing the time-delay distance,
D�t , (Suyu et al. 2010):

D
0
�t ⌘ (1 � ext) D

bkg
�t
, (5)

where D
0
�t

indicates the time-delay distance along the specific LOS
corresponding to the explicit lens model and D

bkg
�t

corresponds to the
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• If source is variable, there is a “time delay” 
between the multiple images 

• Allows to probe absolute distances of the 
source-lens-observer configuration 

• Provides a physical anchor of the scales at 
intermediate redshifts, independent of CMB 
and distance ladder

Time-delay cosmography
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TDCOSMO project 
(H0LiCOW+COSMOGRAIL+ STRIDES+SHARP)

• Detailed analysis of several time-delay 
lenses (Suyu+2017) 
- long term monitoring from 

COSMOGRAIL (Courbin+2011) or 
VLA (Fassnacht+2002) for accurate 
time delays 

- high-resolution HST or AO imaging 
for detailed lens modeling 

- wide-field imaging/spectroscopy to 
characterize mass along LOS 

• Goal is to constrain H0 to ~few % 
precision 

• Seven lenses have been analyzed 
(Suyu+2010, 2013; Wong+2017, 
Birrer+2019, Rusu+2019, Chen+2019, 
Shajib+2019), more coming

HE 0435-1223B1608+656 RXJ1131-1231

WFI2033-4723 PG1115+080 SDSS J1206+4432



Single lens - multiple data sets
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galaxy, �P, adds valuable information to the cosmographic infer-
ence. �P depends on the three-dimensional gravitational potential,
the three-dimensional stellar (light) profile and the anisotropy dis-
tribution of the stellar orbits, �ani. The gravitational potential and
the stellar light profile can be expressed in terms of a de-projection
of the lens, ⇠ lens, and surface brightness models, ⇠ light, constrained
by the imaging data in combination with the cosmographic relevant
angular diameter distances as

(�P)2 = Ds
Dds

· c
2 · J(⇠ lens, ⇠ light, �ani), (6)

where J captures all the model components computed from angles
measured on the sky and the stellar orbital anisotropy distribution.
We describe the detailed modelling that goes into Equation 6 (and
thus J) in Section 4.6.

Gravitational microlensing can also produce changes in the ac-
tual time delays measured between quasar images of order the light-
crossing time-scale of the quasar emission region (Tie & Kochanek
2018). We take into account the possible e�ects of this so-called
microlensing time delay using the description presented by Bonvin
et al. (2018) and fold it into our analysis using the foward modelling
approach of Chen et al. (2018). The e�ect is much smaller than other
uncertainties for SDSS 1206+4332 , as described in Section 5.3.

2.2 Cosmographic likelihood

The likelihood for the cosmological relevant parameters, ⇡, is fully
contained in the angular diameter distances inferred from the data
for the particular redshift configuration of the lens, {Dd,Ds,Dds} ⌘
Dd,s,ds. We can therefore write the probability of a cosmological
model, ⇡, given the data, dJ1206, as

P(⇡ |dJ1206) / P(dJ1206 |⇡)P(⇡) = P(dJ1206 |Dd,s,ds(⇡))P(⇡), (7)

where we made it explicit that the evaluation of the likelihood
of a specific cosmology, ⇡, folds in the likelihood of the data,
dJ1206, only through the explicit predictions of the angular diameter
distances, Dd,s,ds(⇡). In this paper, we present a cosmological model
independent likelihood P(dJ1206 |Dd,s,ds) that can be combined with
other cosmological probes as well as posterior distributions for
specific cosmological models and priors, P(⇡).

The data allows us to constrain two angular diameter distance
ratios. First, inverting Equation 2 leads to

(1 + zd)
DdDs
Dds

=
c�tAB

��AB(⇠ lens)
. (8)

Second, Equatio 6 leads to

Ds
Dds
=

(�P)2
c2J(⇠ lens, ⇠ light, �ani)

. (9)

Equation 8, containing the time-delay distance D�t (see Equation
4) is the most relevant term in the TDSL analysis and is inversely
proportional to the Hubble constant.

The constraints on the angular distances of Equation 8 and 9
share the parameters in the lens model, ⇠ lens, and as such are corre-
lated and their covariance needs to be taken into account. Following
Birrer et al. (2016) we map the full covariance between the di�erent
data sets and the angular diameter distances involved.

For illustration purpose, we can also combine Equation 9 and 8
algebraically to solve for Dd

Dd =
1

(1 + zd)
c�tAB

��AB(⇠ lens)
c

2
J(⇠ lens, ⇠ light, �ani)

(�P)2
. (10)

To account for the e�ect of the LOS convergence in the cosmo-
graphic likelihood, the angular diameters have to be transformed ac-
cording to Equation (5) to be compared with a cosmological model.
The total cosmographic information will always be contained in a
two-dimensional plane of angular diameter distance ratios (Birrer
et al. 2016).

2.3 Combined Bayesian Analysis

The cosmographic likelihood (Equation 7) is the product of the
likelihoods of the independent data sets:

P(dJ1206 |Dd,s,ds) = P(�tAB |Dd,s,ds) ⇥ P(�P |Dd,s,ds)⇥
P(IHST |Dd,s,ds) ⇥ P(denv |Dd,s,ds). (11)

The cosmographic parameters primarily fold in the likelihoods of
the time delay and the stellar kinematics. The single plane lensing
kernel does not require any knowledge of the absolute scales in-
volved and is independent of the angular diameter distances4. The
LOS analysis is marginally dependent on the specific cosmology
through the lensing kernel and the amplitude of the mass power
spectrum. This second-order e�ect has a sub-per-cent level impact
on the inferred distance ratios and we ignore this dependence in our
analysis.

The di�erent likelihoods in Equation 11 include ‘nuisance’
parameters. These are the lens model parameters, ⇠ lens, and light
model parameters ⇠ light inferred from IHST, as well as the external
convergence ext inferred from denv and the kinematic anisotropy
�ani, where a prior must be chosen. Additionally we consider a mi-
crolensing time delay e�ect with parameters ⇠micro. The marginal-
ization over the ‘nuisance’ parameters, taking into account the spe-
cific dependence of the involved parameters, can be expressed as
follows:

P(dJ1206 |Dd,s,ds) =
π

P(IHST |⇠ lens, ⇠ light)P(⇠ lens, ⇠ light)

⇥ P(denv |ext)P(ext) ⇥ P(�tAB |Dd,s,ds, ⇠ lens, ⇠micro, ext)
⇥P(�P |Dd,s,ds, ⇠ lens, ⇠ light, ext, �ani)d⇠ lens,light,microdextd�ani.

(12)

Given the hierarchy of the parameters, the sampling of the full
likelihood can be partially separated (see Section 7 for details).

2.4 Lensing degeneracies and the assessment of systematics

Degeneracies are inherent in strong lens modelling (e.g., Saha 2000;
Saha et al. 2006). In particular, the mass-sheet degeneracy (MSD,
Falco et al. 1985) is relevant to consider in a cosmographic analysis.
As shown by Falco et al. (1985), a remapping of a reference mass
distribution  by

�(✓) = �(✓) + (1 � �) (13)

combined with an isotropic scaling of the source plane coordinates
� ! �� will result in the same dimensionless observables (image
positions, image shapes and magnification ratios) regardless of the
value of � but with changed time-delay ratios. This type of mapping
is called mass-sheet-transform (MST).

The additional mass term in the MST (Equation 13) can be

4 In case of multi-plane lensing, additional relative distance scaling relations
to specific redshifts have to be included in the modelling, and thus a minor
cosmological dependence arises.
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Figure 2. Cutouts around the two point-sources (top line), their

scaled di↵erence (bottom left) and first guess fo the PSF (bottom

right) as decribed in Section 2.1.

b/a p.a. (N of W) n Re↵ �ra �dec

0.89 51.24 deg 2.66 0.60
00

0.252
00

2.583
00

Table 1. Parameters of the best-fitting deflector light profile.

From left to right: axis ratio, position angle (counterclockwise, N

of W); Sérsic index; e↵ective radius; relative astrometry from the

southern-most quasar image, peak to peak, with r.a. (resp. dec.)

increasing to the East (resp. North).

2.1 PSF estimation

For the deflector light subtraction, a first guess of the PSF
is su�cient. We obtain it by isolating small cutouts centred
on the two quasar images, subtracting to each of them the
average flux around the border, normalizing their fluxes to
unity, then coadding the two cutouts.

To recover a PSF that is common to both images and
avoid propagating noise, we use a crude version of regu-
larization. For each pixel of the target PSF coadd we con-
sider the two corresponding pixel-values p1, p2 in the point-
source cutouts: when these are within 0.1 of the average
avp = (p1 + p2)/2, we register avp in the PSF coadd, oth-
erwise we register the minimum min(p1, p2). The result is
shown in Figure 2.

The reconstruction relies on the fact that the lensed
host is stretched tangentially by gravitational lensing, so
that in first approximation it contributes a uniform back-
ground flux to the point-source, which should dominate over
the PSF light at large enough distances from the PSF core.
A variant of this procedure will be combined iteratively with
the lens model in Section 4.

3 KECK SPECTROSCOPY

Long-slit spectroscopic measurements of SDSS
J1206+4332 were taken with the instrument DEIMOS
(Faber et al. 2003) on Keck 2, on May 16 2015. The 1”-wide
slit was centred on the deflector galaxy and aligned with
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Figure 3. DEIMOS slit spectra. Top: Extracted 1D spectrum

of the quasar host galaxy. Bottom: Extracted 1D spectrum of the

quasar (northern point source) and the deflector galaxy. The red

line is the best-fit spectrum obtained from the velocity dispersion

fitting. The green line is the best-fit polynomial used to model

continuum emission from the quasar. The vertical gray bands are

regions of the spectrum masked out from the fit.

the long axis in the E-W direction (see Fig. 1).
We used the 600ZD grism, covering the wavelength range
4600Å - 9200Å , with a spectral resolution of about
160 km s�1 FWHM. The total integration time was 1 hour.
We detect a signal from the deflector galaxy, the quasar,
and the quasar host. The lens galaxy and quasar host are
spatially resolved, while the quasar itself, not covered by
the slit, shows up as a contamination to the lens galaxy
spectrum. The 1D spectra of the lens galaxy and quasar
host are plotted in Figure 3.

The quasar component is visible with its continuum
emission in the blue side of the lens galaxy spectrum and
with broad emission lines. The host galaxy spectrum is very
faint. The only clear line detected is [C III] 1908Å, also seen
in the quasar component. However, while the quasar line is
broad (FWHM ⇠ 6000 km s�1), the same line is much nar-
rower in the spectrum of the host. Thus, we infer that the
quadruply imaged part of the host galaxy does not include
the compact broad line region, but only the significantly
more extended narrow line region (NLR). In other words,
the lens is acting as a natural “coronagraph”, blocking out
the light of the accretion disk and the BLR in two of the
images. From a fit to the narrow line wavelength, we obtain
a source redshift zs = 1.789, confirming the one measured
by Oguri et al. (2005). At lower signal-to-noise ratio, there is
an absorption feature compatible with FeII at 2344Å at the
host redshift zs, which is seen also in the quasar spectrum.

The lens galaxy spectrum has some prominent stellar
absorption features: Ca K,H at 3934Å, 3967Å, the G-band
absorption complex around 4300Å, and Mgb at 5175Å, at
a redshift zd = 0.745. In addition to these stellar absorp-
tion lines we detect nebular absorption in the Mg II doublet
2795Å - 2803Å at z = 0.748. These lines were also detected
by Oguri et al. (2005), who used them to estimate the lens
redshift. There is a rest-frame velocity di↵erence of about
516 km s�1 between stellar and Mg II absorption. We note
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galaxy, �P, adds valuable information to the cosmographic infer-
ence. �P depends on the three-dimensional gravitational potential,
the three-dimensional stellar (light) profile and the anisotropy dis-
tribution of the stellar orbits, �ani. The gravitational potential and
the stellar light profile can be expressed in terms of a de-projection
of the lens, ⇠ lens, and surface brightness models, ⇠ light, constrained
by the imaging data in combination with the cosmographic relevant
angular diameter distances as

(�P)2 = Ds
Dds

· c
2 · J(⇠ lens, ⇠ light, �ani), (6)

where J captures all the model components computed from angles
measured on the sky and the stellar orbital anisotropy distribution.
We describe the detailed modelling that goes into Equation 6 (and
thus J) in Section 4.6.

Gravitational microlensing can also produce changes in the ac-
tual time delays measured between quasar images of order the light-
crossing time-scale of the quasar emission region (Tie & Kochanek
2018). We take into account the possible e�ects of this so-called
microlensing time delay using the description presented by Bonvin
et al. (2018) and fold it into our analysis using the foward modelling
approach of Chen et al. (2018). The e�ect is much smaller than other
uncertainties for SDSS 1206+4332 , as described in Section 5.3.

2.2 Cosmographic likelihood

The likelihood for the cosmological relevant parameters, ⇡, is fully
contained in the angular diameter distances inferred from the data
for the particular redshift configuration of the lens, {Dd,Ds,Dds} ⌘
Dd,s,ds. We can therefore write the probability of a cosmological
model, ⇡, given the data, dJ1206, as

P(⇡ |dJ1206) / P(dJ1206 |⇡)P(⇡) = P(dJ1206 |Dd,s,ds(⇡))P(⇡), (7)

where we made it explicit that the evaluation of the likelihood
of a specific cosmology, ⇡, folds in the likelihood of the data,
dJ1206, only through the explicit predictions of the angular diameter
distances, Dd,s,ds(⇡). In this paper, we present a cosmological model
independent likelihood P(dJ1206 |Dd,s,ds) that can be combined with
other cosmological probes as well as posterior distributions for
specific cosmological models and priors, P(⇡).

The data allows us to constrain two angular diameter distance
ratios. First, inverting Equation 2 leads to

(1 + zd)
DdDs
Dds

=
c�tAB

��AB(⇠ lens)
. (8)

Second, Equatio 6 leads to

Ds
Dds
=

(�P)2
c2J(⇠ lens, ⇠ light, �ani)

. (9)

Equation 8, containing the time-delay distance D�t (see Equation
4) is the most relevant term in the TDSL analysis and is inversely
proportional to the Hubble constant.

The constraints on the angular distances of Equation 8 and 9
share the parameters in the lens model, ⇠ lens, and as such are corre-
lated and their covariance needs to be taken into account. Following
Birrer et al. (2016) we map the full covariance between the di�erent
data sets and the angular diameter distances involved.

For illustration purpose, we can also combine Equation 9 and 8
algebraically to solve for Dd

Dd =
1

(1 + zd)
c�tAB

��AB(⇠ lens)
c

2
J(⇠ lens, ⇠ light, �ani)

(�P)2
. (10)

To account for the e�ect of the LOS convergence in the cosmo-
graphic likelihood, the angular diameters have to be transformed ac-
cording to Equation (5) to be compared with a cosmological model.
The total cosmographic information will always be contained in a
two-dimensional plane of angular diameter distance ratios (Birrer
et al. 2016).

2.3 Combined Bayesian Analysis

The cosmographic likelihood (Equation 7) is the product of the
likelihoods of the independent data sets:

P(dJ1206 |Dd,s,ds) = P(�tAB |Dd,s,ds) ⇥ P(�P |Dd,s,ds)⇥
P(IHST |Dd,s,ds) ⇥ P(denv |Dd,s,ds). (11)

The cosmographic parameters primarily fold in the likelihoods of
the time delay and the stellar kinematics. The single plane lensing
kernel does not require any knowledge of the absolute scales in-
volved and is independent of the angular diameter distances4. The
LOS analysis is marginally dependent on the specific cosmology
through the lensing kernel and the amplitude of the mass power
spectrum. This second-order e�ect has a sub-per-cent level impact
on the inferred distance ratios and we ignore this dependence in our
analysis.

The di�erent likelihoods in Equation 11 include ‘nuisance’
parameters. These are the lens model parameters, ⇠ lens, and light
model parameters ⇠ light inferred from IHST, as well as the external
convergence ext inferred from denv and the kinematic anisotropy
�ani, where a prior must be chosen. Additionally we consider a mi-
crolensing time delay e�ect with parameters ⇠micro. The marginal-
ization over the ‘nuisance’ parameters, taking into account the spe-
cific dependence of the involved parameters, can be expressed as
follows:

P(dJ1206 |Dd,s,ds) =
π

P(IHST |⇠ lens, ⇠ light)P(⇠ lens, ⇠ light)

⇥ P(denv |ext)P(ext) ⇥ P(�tAB |Dd,s,ds, ⇠ lens, ⇠micro, ext)
⇥P(�P |Dd,s,ds, ⇠ lens, ⇠ light, ext, �ani)d⇠ lens,light,microdextd�ani.

(12)

Given the hierarchy of the parameters, the sampling of the full
likelihood can be partially separated (see Section 7 for details).

2.4 Lensing degeneracies and the assessment of systematics

Degeneracies are inherent in strong lens modelling (e.g., Saha 2000;
Saha et al. 2006). In particular, the mass-sheet degeneracy (MSD,
Falco et al. 1985) is relevant to consider in a cosmographic analysis.
As shown by Falco et al. (1985), a remapping of a reference mass
distribution  by

�(✓) = �(✓) + (1 � �) (13)

combined with an isotropic scaling of the source plane coordinates
� ! �� will result in the same dimensionless observables (image
positions, image shapes and magnification ratios) regardless of the
value of � but with changed time-delay ratios. This type of mapping
is called mass-sheet-transform (MST).

The additional mass term in the MST (Equation 13) can be

4 In case of multi-plane lensing, additional relative distance scaling relations
to specific redshifts have to be included in the modelling, and thus a minor
cosmological dependence arises.
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by the imaging data in combination with the cosmographic relevant
angular diameter distances as
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2 · J(⇠ lens, ⇠ light, �ani), (6)

where J captures all the model components computed from angles
measured on the sky and the stellar orbital anisotropy distribution.
We describe the detailed modelling that goes into Equation 6 (and
thus J) in Section 4.6.

Gravitational microlensing can also produce changes in the ac-
tual time delays measured between quasar images of order the light-
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of a specific cosmology, ⇡, folds in the likelihood of the data,
dJ1206, only through the explicit predictions of the angular diameter
distances, Dd,s,ds(⇡). In this paper, we present a cosmological model
independent likelihood P(dJ1206 |Dd,s,ds) that can be combined with
other cosmological probes as well as posterior distributions for
specific cosmological models and priors, P(⇡).

The data allows us to constrain two angular diameter distance
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Equation 8, containing the time-delay distance D�t (see Equation
4) is the most relevant term in the TDSL analysis and is inversely
proportional to the Hubble constant.

The constraints on the angular distances of Equation 8 and 9
share the parameters in the lens model, ⇠ lens, and as such are corre-
lated and their covariance needs to be taken into account. Following
Birrer et al. (2016) we map the full covariance between the di�erent
data sets and the angular diameter distances involved.

For illustration purpose, we can also combine Equation 9 and 8
algebraically to solve for Dd
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To account for the e�ect of the LOS convergence in the cosmo-
graphic likelihood, the angular diameters have to be transformed ac-
cording to Equation (5) to be compared with a cosmological model.
The total cosmographic information will always be contained in a
two-dimensional plane of angular diameter distance ratios (Birrer
et al. 2016).

2.3 Combined Bayesian Analysis

The cosmographic likelihood (Equation 7) is the product of the
likelihoods of the independent data sets:
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The cosmographic parameters primarily fold in the likelihoods of
the time delay and the stellar kinematics. The single plane lensing
kernel does not require any knowledge of the absolute scales in-
volved and is independent of the angular diameter distances4. The
LOS analysis is marginally dependent on the specific cosmology
through the lensing kernel and the amplitude of the mass power
spectrum. This second-order e�ect has a sub-per-cent level impact
on the inferred distance ratios and we ignore this dependence in our
analysis.

The di�erent likelihoods in Equation 11 include ‘nuisance’
parameters. These are the lens model parameters, ⇠ lens, and light
model parameters ⇠ light inferred from IHST, as well as the external
convergence ext inferred from denv and the kinematic anisotropy
�ani, where a prior must be chosen. Additionally we consider a mi-
crolensing time delay e�ect with parameters ⇠micro. The marginal-
ization over the ‘nuisance’ parameters, taking into account the spe-
cific dependence of the involved parameters, can be expressed as
follows:
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Degeneracies are inherent in strong lens modelling (e.g., Saha 2000;
Saha et al. 2006). In particular, the mass-sheet degeneracy (MSD,
Falco et al. 1985) is relevant to consider in a cosmographic analysis.
As shown by Falco et al. (1985), a remapping of a reference mass
distribution  by

�(✓) = �(✓) + (1 � �) (13)

combined with an isotropic scaling of the source plane coordinates
� ! �� will result in the same dimensionless observables (image
positions, image shapes and magnification ratios) regardless of the
value of � but with changed time-delay ratios. This type of mapping
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Figure 2. Cutouts around the two point-sources (top line), their

scaled di↵erence (bottom left) and first guess fo the PSF (bottom

right) as decribed in Section 2.1.

b/a p.a. (N of W) n Re↵ �ra �dec

0.89 51.24 deg 2.66 0.60
00

0.252
00

2.583
00

Table 1. Parameters of the best-fitting deflector light profile.

From left to right: axis ratio, position angle (counterclockwise, N

of W); Sérsic index; e↵ective radius; relative astrometry from the

southern-most quasar image, peak to peak, with r.a. (resp. dec.)

increasing to the East (resp. North).

2.1 PSF estimation

For the deflector light subtraction, a first guess of the PSF
is su�cient. We obtain it by isolating small cutouts centred
on the two quasar images, subtracting to each of them the
average flux around the border, normalizing their fluxes to
unity, then coadding the two cutouts.

To recover a PSF that is common to both images and
avoid propagating noise, we use a crude version of regu-
larization. For each pixel of the target PSF coadd we con-
sider the two corresponding pixel-values p1, p2 in the point-
source cutouts: when these are within 0.1 of the average
avp = (p1 + p2)/2, we register avp in the PSF coadd, oth-
erwise we register the minimum min(p1, p2). The result is
shown in Figure 2.

The reconstruction relies on the fact that the lensed
host is stretched tangentially by gravitational lensing, so
that in first approximation it contributes a uniform back-
ground flux to the point-source, which should dominate over
the PSF light at large enough distances from the PSF core.
A variant of this procedure will be combined iteratively with
the lens model in Section 4.

3 KECK SPECTROSCOPY

Long-slit spectroscopic measurements of SDSS
J1206+4332 were taken with the instrument DEIMOS
(Faber et al. 2003) on Keck 2, on May 16 2015. The 1”-wide
slit was centred on the deflector galaxy and aligned with

0

1

2

3

4

Fl
ux

(a
rb

itr
ar

y
un

its
) Host galaxy

5000 6000 7000 8000 9000

Observed wavelength (Å)
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Figure 3. DEIMOS slit spectra. Top: Extracted 1D spectrum

of the quasar host galaxy. Bottom: Extracted 1D spectrum of the

quasar (northern point source) and the deflector galaxy. The red

line is the best-fit spectrum obtained from the velocity dispersion

fitting. The green line is the best-fit polynomial used to model

continuum emission from the quasar. The vertical gray bands are

regions of the spectrum masked out from the fit.

the long axis in the E-W direction (see Fig. 1).
We used the 600ZD grism, covering the wavelength range
4600Å - 9200Å , with a spectral resolution of about
160 km s�1 FWHM. The total integration time was 1 hour.
We detect a signal from the deflector galaxy, the quasar,
and the quasar host. The lens galaxy and quasar host are
spatially resolved, while the quasar itself, not covered by
the slit, shows up as a contamination to the lens galaxy
spectrum. The 1D spectra of the lens galaxy and quasar
host are plotted in Figure 3.

The quasar component is visible with its continuum
emission in the blue side of the lens galaxy spectrum and
with broad emission lines. The host galaxy spectrum is very
faint. The only clear line detected is [C III] 1908Å, also seen
in the quasar component. However, while the quasar line is
broad (FWHM ⇠ 6000 km s�1), the same line is much nar-
rower in the spectrum of the host. Thus, we infer that the
quadruply imaged part of the host galaxy does not include
the compact broad line region, but only the significantly
more extended narrow line region (NLR). In other words,
the lens is acting as a natural “coronagraph”, blocking out
the light of the accretion disk and the BLR in two of the
images. From a fit to the narrow line wavelength, we obtain
a source redshift zs = 1.789, confirming the one measured
by Oguri et al. (2005). At lower signal-to-noise ratio, there is
an absorption feature compatible with FeII at 2344Å at the
host redshift zs, which is seen also in the quasar spectrum.

The lens galaxy spectrum has some prominent stellar
absorption features: Ca K,H at 3934Å, 3967Å, the G-band
absorption complex around 4300Å, and Mgb at 5175Å, at
a redshift zd = 0.745. In addition to these stellar absorp-
tion lines we detect nebular absorption in the Mg II doublet
2795Å - 2803Å at z = 0.748. These lines were also detected
by Oguri et al. (2005), who used them to estimate the lens
redshift. There is a rest-frame velocity di↵erence of about
516 km s�1 between stellar and Mg II absorption. We note
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Figure 5. The most likely lens model and reconstructed image of DES J0408�5354 using the composite model. The top row shows the observed RGB image,
reconstructed RGB image, the convergence profile, and the magnification model in order from the left-hand side to the right-hand side. The next three rows
show the observed image, the reconstructed image, the residual, the reconstructed source in order from the left-hand side to the right-hand side for each of the
HST filters. The three filters are F160W (second row), F814W (third row), and F475X (fourth row). All the scale bars in each plot correspond to 1 arcsec.

Table 4. Lensing quantities at the image positions used to create the mi-
crolensing time-delay map.

Image  ? �ext µ

A 0.46 0.03 0.19 3.9
B 0.59 0.06 0.32 15.5
D 0.70 0.13 0.69 -2.6

We account for the microlensing time-delay e�ect in the mea-
sured time delay by sampling from the microlensing time-delay
distribution and adjusting the measured time delay as

�tXY,adjusted = �tXY,measured + tX,micro � tY,micro. (56)

The microlensing time-delay e�ects is small compared to the un-
certainty on the measured time delays. Thus, accounting for this
microlensing time-delay e�ect does not shift the e�ective time-

Table 5. Properties of the quasar accretion disk used to compute the mi-
crolensing time-delay maps.

Quantity Value
Black hole mass, log10(MBH/M�) 8.41 ± 0.27
Eddington ratio, log10(Lbol/LEdd) -1.48 ± 0.27
Accretion disk size, R0 (cm) 3.125⇥1014

Accretion e�ciency, ⌘ 0.1
Central wavelength for light curve observation, � (µm) 0.668
Average foreground stellar mass, hM?/M� i 0.3

delay distance by more than 0.1 per cent (Fig. 9). We only perform
this step as a check and we do not include this e�ect in our inference
of H0.
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ABSTRACT
We present a blind time-delay cosmographic analysis for the lens system DES J0408�5354.
This system is extraordinary for the presence of two sets of multiple images at di�erent red-
shifts, which provide the opportunity to obtain more information at the cost of increased
modelling complexity with respect to previously analyzed systems. We perform detailed mod-
elling of the mass distribution for this lens system using three band Hubble Space Telescope

imaging. We combine the measured time delays, line-of-sight central velocity dispersion of the
deflector, and statistically constrained external convergence with our lens models to estimate
two cosmological distances. We measure the “e�ective” time-delay distance corresponding
to the redshifts of the deflector and the lensed quasar De�

�t = 3382+146
�115 Mpc and the angular

diameter distance to the deflector Dd = 1711+376
�280 Mpc, with covariance between the two dis-

tances. From these constraints on the cosmological distances, we infer the Hubble constant
H0= 74.2+2.7

�3.0 km s-1 Mpc-1 assuming a flat ⇤CDM cosmology and a uniform prior for ⌦m as
⌦m ⇠ U(0.05, 0.5). This measurement gives the most precise constraint on H0 to date from a
single lens. Our measurement is consistent with that obtained from the previous sample of six
lenses analyzed by the H0 Lenses in COSMOGRAIL’s Wellspring (H0LiCOW) collaboration.
It is also consistent with measurements of H0 based on the local distance ladder, reinforcing
the tension with the inference from early universe probes, for example, with 2.2� discrepancy
from the cosmic microwave background measurement.
Key words: gravitational lensing: strong – cosmological parameters – cosmology: observa-
tions – distance scale
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Figure 2. Marginalized H0 for a flat ⇤CDM cosmology with uniform priors. Shown are the H0 posterior PDFs for the individual lens
systems (shaded curves), as well as the combined constraint from all six systems (black line). The median and 16th and 84th percentiles
are shown in the figure legend.

Table 5. Cosmological parameters for various cosmologies from time-delay cosmography only.

Model H0 (km s�1 Mpc�1) ⌦m ⌦⇤ or ⌦DE ⌦k w or w0 wa

U⇤CDM 73.3+1.7
�1.8 0.30+0.13

�0.13 0.70+0.13
�0.13 ⌘ 0 ⌘ �1 ⌘ 0

Uo⇤CDM 74.4+2.1
�2.3 0.24+0.16

�0.13 0.51+0.21
�0.18 0.26+0.17

�0.25 ⌘ �1 ⌘ 0

UwCDM 81.6+4.9
�5.3 0.31+0.11

�0.10 0.69+0.10
�0.11 ⌘ 0 �1.90+0.56

�0.41 ⌘ 0

Uw0waCDM 81.3+5.1
�5.4 0.31+0.11

�0.11 0.69+0.11
�0.11 ⌘ 0 �1.86+0.63

�0.45 �0.05+1.45
�1.37

Reported values are medians, with errors corresponding to the 16th and 84th percentiles.

time-delay distance is only weakly sensitive to ⌦m and ⌦⇤,
so we would expect a similar insensitivity to ⌦k. However,
the fact that time-delay cosmography constrains H0 very
tightly indirectly imposes a tight constraint on curvature
when combined with other probes.

5.2.2 Flat wCDM

We consider a flat wCDM cosmology in which the dark en-
ergy density is not a cosmological constant, but instead is

time-dependent with an equation-of-state parameter w. We
denote the dark energy density parameter as ⌦DE = 1�⌦m.
The w = �1 case corresponds to flat ⇤CDM with ⌦DE =
⌦⇤. We adopt a uniform prior on w in the range [�2.5, 0.5],
keeping the same uniform priors on H0 and ⌦m as in the flat
⇤CDM model.

We show the parameter constraints in Table 5. In Fig-
ure 5, we show the marginalized constraint on H0 in this cos-
mology, which is H0 = 81.6+4.9

�5.3 km s�1 Mpc�1. The com-
bined constraint on H0 appears to be shifted to a higher
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Table 1. Observation information and references for the lens systems.

System name Observation date
Total exposure time

Reference(seconds)
F160W F814W F475X

PS J0147+4630 2017 Sept 13 2196.9 1348.0 1332.0 Berghea et al. (2017)
SDSS J0248+1913 2017 Sept 5 2196.9 1428.0 994.0 Ostrovski et al. (in preparation), Delchambre et al. (2018)
ATLAS J0259-1635 2017 Sept 7 2196.9 1428.0 994.0 Schechter et al. (2018)
DES J0405-3308 2017 Sept 6 2196.9 1428.0 1042.0 Anguita et al. (2018)
DES J0408-5354 2018 Jan 17 2196.9 1428.0 1348.0 Lin et al. (2017); Diehl et al. (2017); Agnello et al. (2017)
DES J0420-4037 2017 Nov 23 2196.9 1428.0 1158.0 Ostrovski et al. (in preparation)
PS J0630-1201 2017 Oct 5 2196.9 1428.0 980.0 Ostrovski et al. (2018); Lemon et al. (2018)
SDSS J1251+2935 2018 Apr 26 2196.9 1428.0 1010.0 Kayo et al. (2007)
SDSS J1330+1810 2018 Aug 15 2196.9 1428.0 994.0 Oguri et al. (2008)
SDSS J1433+6007 2018 May 4 2196.9 1428.0 1504.0 Agnello et al. (2018a)
PS J1606-2333 2017 Sept 1 2196.9 1428.0 994.0 Lemon et al. (2018)
DES J2038-4008 2017 Aug 29 2196.9 1428.0 1158.0 Agnello et al. (2018c)
WISE J2344-3056 2017 Sept 9 2196.9 1428.0 1042.0 Schechter et al. (2017)

Figure 1. Comparison between the observed (first, third and fifth columns) and reconstructed (second, fourth and sixth columns)
strong-lens systems. The three HST bands: F160W, F814W, and F475X are used in the red, green, and blue channels, respectively, to
create the red-green-blue (RGB) images. Horizontal white lines for each system are rulers showing 1 arcsec. The relative intensities of
the bands have been adjusted for each lens system for clear visualisation of the features in the system.
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Fig. 18: Comparison of di�erent blind H0 measurements by the TDCOSMO collaboration, based on di�erent mass profile assump-
tions and data sets incorporated. All measurements presented on this plot were performed blindly with regard to the inference of
H0. The measurement on top is the combined H0LiCOW 6 lenses constraints presented by Wong et al. (2020), when averaging
power-law and composite NFW plus stars (with constant mass-to-light ratio) on a lens-by-lens basis without correlated errors among
the lenses. The next two measurements are from Millon et al. (2019) of the 7 TDCOSMO time-delay lenses (6 H0LiCOW lenses
and 1 STRIDES lens by Shajib et al. (2020)), when performing the inference assuming either a composite NFW plus stars (with
constant mass-to-light ratio) or the power-law mass density profile for the galaxy acting as a lens. In the lower panel, we show the
results from this work. The main di�erence with respect to previous work is that we have made virtually no assumption on the
radial mass density profile of the lens galaxy, and taken into account the covariance between the lenses. The analysis in this work is
constrained only by the stellar kinematics and fully accounts for the uncertainty related to the mass sheet transformation (MST). In
this framework, we obtain four measurements according to the datasets considered. The TDCOSMO-only inference is based on the
same set of 7 lenses as those by Millon et al. (2019). The inferred median value is the same, indicating no bias, and the uncertainties,
as expected, are larger. The next three measurements rely on external datasets from the SLACS survey, by making the assumption
that the lens galaxies in the two surveys are drawn from the same population. The TDCOSMO+SLACSIFU measurements uses, in
addition to the TDCOSMO sample, 9 lenses from the SLACS sample with IFU observations to inform the anisotropy prior applied
on the TDCOSMO lenses. The TDCOSMO+SLACSSDSS measurement comes from the joint analysis of the TDCOSMO sample and
33 SLACS lenses with SDSS spectroscopy. The TDCOSMO+SLACSSDSS+IFU presents the joint analysis of all three data sets, again
assuming self-similar distributions of the mass profiles and stellar anisotropy. The TDCOSMO-only and TDCOSMO+SLACSIFU
analyses do not rely on self-similar mass profiles of the SLACS and TDCOSMO sample while the TDCOSMO+SLACSSDSS and
TDCOSMO+SLACSSDSS+IFU measurements (orange and purple) do. All the measurements shown in this plot are in statistical
agreement with each other. See Section 8.5 for a discussion and physical interpretation of the results. � source
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a cosmological-dependent and cosmology-independent part, as
(Birrer et al. 2016, 2019)

(�P)2 = Ds
Dds

c
2
J(⇠mass, ⇠ light, �ani) (17)

where J(⇠mass, ⇠ light, �ani) is the dimensionless and cosmology-
independent term of the Jeans equation only relying on the an-
gular units in the light, mass and anisotropy model.

Inverting Equation 17 illustrates that a measured velocity
dispersion, �P, allows us to constrain the distance ratio Ds/Dds,
independent of the cosmological model and time delays but while
relying on the same lens model, ⇠ lens,

Ds
Dds
=

(�P)2
c2J(⇠ lens, ⇠ light, �ani)

. (18)

We note that the distance ratio Ds/Dds can be constrained
without time delays being available. If one has kinematic and
time-delay data, instead of expressing constraints on Ds/Dds,
one can also express the cosmologically independent constraints
in terms of Dd (e.g. Paraficz & Hjorth 2009; Jee et al. 2015;
Birrer et al. 2019) as

Dd =
1

(1 + zd)
c�tAB

��AB(⇠ lens)
c

2
J(⇠ lens, ⇠ light, �ani)

(�P)2 . (19)

In this work, we do not transform the kinematics constraints into
Ds/Dds or Dd constraints but work directly on the likelihood level
of the velocity dispersion when discriminating between di�erent
cosmological models.

In Appendix B we illustrate the radial dependence on the
model predicted velocity dispersion, �P, for di�erent stellar
anisotropy models. Observations at di�erent projected radii can
partially break the mass-anisotropy degeneracy provided that we
have independent mass profile estimates from lensing observ-
ables.

2.3. Mass-sheet transform

The mass-sheet transform (MST) is a multiplicative transform of
the lens Equation (Eqn. 1) (Falco et al. 1985)

�� = ✓ � �↵(✓) � (1 � �)✓, (20)

which preserves image positions (and any higher order relative
di�erentials of the lens equation) under a linear source displace-
ment � ! ��. The term (1��)✓ in Equation 20 above describes
an infinite sheet of convergence (or mass), and hence the name
mass-sheet transform. Only observables related to the absolute
source size, intrinsic magnification or to the lensing potential are
able to break this degeneracy.

The convergence field transforms according to

�(✓) = � ⇥ (✓) + (1 � �) . (21)

The same relative lensing observables can result if the mass
profile is scaled by the factor � with the addition of a sheet of
convergence (or mass) of (✓) = (1 � �).

The di�erent observables described in Section 2.1 & 2.2
transform by a MST term � as follow:

The image positions remain invariant

✓� = ✓ . (22)

The source position scales with �

�� = ��. (23)

The time delay scales with �

�tAB� = ��tAB (24)

and the velocity dispersion scales with � as

�P
v � =

p
��P

v . (25)

Until now we have only stated how the MST impacts ob-
servables directly. However, it is also useful to describe how
cosmographic constraints derived from a set of observables and
assumptions on the mass profile are transformed when transform-
ing the lens model with a MST (Eqn. 8, 18, 19). The time-delay
distance (Eqn. 7) is dependent on the time delay �t (Eqn. 5)

D�t � = �
�1

D�t . (26)

The distance ratio constrained by the kinematics and the lens
model scales as

(Ds/Dds)� = ��1
Ds/Dds. (27)

Given time-delay and kinematics data the inference on the angular
diameter distance to the lens is invariant under the MST

Dd� = Dd. (28)

The Hubble constant, when inferred from the time-delay distance,
D�t , transforms as (from Eqn. 9)

H0� = �H0. (29)

Mathematically, all the MSTs can be equivalently stated as a
change in the angular diameter distance to the source

Ds ! �Ds. (30)

In other words, if one knows the dependence of any lensing
variable upon Ds one can transform it under the MST and scale
all other quantities in the same way.

2.4. Line-of-sight contribution

Structure along the line of sight of lenses induce distortions and
focusing (or de-focusing) of the light rays. The first-order shear
distortions do have an observable imprint on the shape of Einstein
rings and can thus be constrained as part of the modeling proce-
dure of strong lensing imaging data. The first order convergence
e�ect alters the angular diameter distances along the specific line
of sight of the strong lens. We define D

lens as the specific angular
diameter distance along the line of sight of the lens and D

bkg as
the angular diameter distance from the homogeneous background
metric without any perturbative contributions. D

lens and D
bkg are

related through the convergence terms as

D
lens
d = (1 � d)Dbkg

d

D
lens
s = (1 � s)Dbkg

s

D
lens
ds = (1 � ds)Dbkg

ds .

(31)

s is the integrated convergence along the line of sight passing
through the strong lens to the source plane and the term 1 � s
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a cosmological-dependent and cosmology-independent part, as
(Birrer et al. 2016, 2019)

(�P)2 = Ds
Dds

c
2
J(⇠mass, ⇠ light, �ani) (17)

where J(⇠mass, ⇠ light, �ani) is the dimensionless and cosmology-
independent term of the Jeans equation only relying on the an-
gular units in the light, mass and anisotropy model.

Inverting Equation 17 illustrates that a measured velocity
dispersion, �P, allows us to constrain the distance ratio Ds/Dds,
independent of the cosmological model and time delays but while
relying on the same lens model, ⇠ lens,

Ds
Dds
=

(�P)2
c2J(⇠ lens, ⇠ light, �ani)

. (18)

We note that the distance ratio Ds/Dds can be constrained
without time delays being available. If one has kinematic and
time-delay data, instead of expressing constraints on Ds/Dds,
one can also express the cosmologically independent constraints
in terms of Dd (e.g. Paraficz & Hjorth 2009; Jee et al. 2015;
Birrer et al. 2019) as

Dd =
1

(1 + zd)
c�tAB

��AB(⇠ lens)
c

2
J(⇠ lens, ⇠ light, �ani)

(�P)2 . (19)

In this work, we do not transform the kinematics constraints into
Ds/Dds or Dd constraints but work directly on the likelihood level
of the velocity dispersion when discriminating between di�erent
cosmological models.

In Appendix B we illustrate the radial dependence on the
model predicted velocity dispersion, �P, for di�erent stellar
anisotropy models. Observations at di�erent projected radii can
partially break the mass-anisotropy degeneracy provided that we
have independent mass profile estimates from lensing observ-
ables.

2.3. Mass-sheet transform

The mass-sheet transform (MST) is a multiplicative transform of
the lens Equation (Eqn. 1) (Falco et al. 1985)

�� = ✓ � �↵(✓) � (1 � �)✓, (20)

which preserves image positions (and any higher order relative
di�erentials of the lens equation) under a linear source displace-
ment � ! ��. The term (1��)✓ in Equation 20 above describes
an infinite sheet of convergence (or mass), and hence the name
mass-sheet transform. Only observables related to the absolute
source size, intrinsic magnification or to the lensing potential are
able to break this degeneracy.

The convergence field transforms according to

�(✓) = � ⇥ (✓) + (1 � �) . (21)

The same relative lensing observables can result if the mass
profile is scaled by the factor � with the addition of a sheet of
convergence (or mass) of (✓) = (1 � �).

The di�erent observables described in Section 2.1 & 2.2
transform by a MST term � as follow:

The image positions remain invariant

✓� = ✓ . (22)

The source position scales with �

�� = ��. (23)

The time delay scales with �

�tAB� = ��tAB (24)

and the velocity dispersion scales with � as

�P
v � =

p
��P

v . (25)

Until now we have only stated how the MST impacts ob-
servables directly. However, it is also useful to describe how
cosmographic constraints derived from a set of observables and
assumptions on the mass profile are transformed when transform-
ing the lens model with a MST (Eqn. 8, 18, 19). The time-delay
distance (Eqn. 7) is dependent on the time delay �t (Eqn. 5)

D�t � = �
�1

D�t . (26)

The distance ratio constrained by the kinematics and the lens
model scales as

(Ds/Dds)� = ��1
Ds/Dds. (27)

Given time-delay and kinematics data the inference on the angular
diameter distance to the lens is invariant under the MST

Dd� = Dd. (28)

The Hubble constant, when inferred from the time-delay distance,
D�t , transforms as (from Eqn. 9)

H0� = �H0. (29)

Mathematically, all the MSTs can be equivalently stated as a
change in the angular diameter distance to the source

Ds ! �Ds. (30)

In other words, if one knows the dependence of any lensing
variable upon Ds one can transform it under the MST and scale
all other quantities in the same way.

2.4. Line-of-sight contribution

Structure along the line of sight of lenses induce distortions and
focusing (or de-focusing) of the light rays. The first-order shear
distortions do have an observable imprint on the shape of Einstein
rings and can thus be constrained as part of the modeling proce-
dure of strong lensing imaging data. The first order convergence
e�ect alters the angular diameter distances along the specific line
of sight of the strong lens. We define D

lens as the specific angular
diameter distance along the line of sight of the lens and D

bkg as
the angular diameter distance from the homogeneous background
metric without any perturbative contributions. D

lens and D
bkg are

related through the convergence terms as

D
lens
d = (1 � d)Dbkg

d

D
lens
s = (1 � s)Dbkg

s

D
lens
ds = (1 � ds)Dbkg

ds .

(31)

s is the integrated convergence along the line of sight passing
through the strong lens to the source plane and the term 1 � s
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choose an uninformative prior, addressing point (2). We make
use of a blind submission to the Time Delay Lens Modeling
Challenge (TDLMC) (Ding et al. 2018) and validate our approach
end to end, including imaging analysis, kinematics analysis and
MST mitigation, addressing point (3) 4.

In our new analysis scheme, the MST is exclusively con-
strained by the kinematic information of the deflector galaxies,
and thus fully accounted for in the error budget. Under these min-
imal assumptions, we expect that the data currently available for
the individual lenses in our TDCOSMO sample will not constrain
H0 to the 2% level.

In addition, we take into account covariances between
the sample galaxies, by formulating the priors on the stellar
anisotropy distribution and the MST at the population level and
globally sampling and marginalizing over their uncertainties.

To further improve the constraints on the mass profile and
the MST on the population level, we incorporate a sample of 33
lenses from the Sloan Lens ACS (SLACS) survey (Bolton et al.
2006) into our analysis. We make use of the lens model infer-
ence results presented by Shajib et al. (prep, 2019), which follow
the standards of the TDCOSMO collaboration. We assess the as-
sumptions in the kinematics modeling and incorporate Integral
Field Unit (IFU) spectroscopy from VIMOS 2D data of a subset
of the SLACS lenses from Czoske et al. (2012) in our analy-
sis. This dataset allows us to improve constraints on the stellar
anisotropy distribution in massive elliptical galaxies at the popu-
lation level and thus reduces uncertainties in the interpretation of
the kinematic measurements, hence improving the constraints on
the MST and H0. Our joint hierarchical analysis is based on the
assumption that the massive elliptical galaxies acting as lenses
in the SLACS and the TDCOSMO sample represent the same
underlying parent population in regard of their mass profiles and
kinematic properties. The final H0 value derived in this work is
inferred from the joint hierarchical analysis of the SLACS and
TDCOSMO samples.

The paper is structured as follows: Section 2 revisits the anal-
ysis performed on individual lenses and assesses potential sys-
tematics due to MST and mass profile assumptions. Section 3
describes the hierarchical Bayesian analysis framework to miti-
gate assumptions and priors associated to the MST to a sample of
lenses. We first validate this approach in Section 4 on the Time-
Delay Lens Modeling Challenge data set (Ding et al. 2018) and
then move to perform this very same analysis on the TDCOSMO
data set in Section 5. Next, we perform our hierarchical analy-
sis on the SLACS sample with imaging and kinematics data to
further constrain uncertainties in the mass profiles and the kine-
matic behavior of the stellar anisotropy in Section 6. We present
the joint analysis and final inference on the Hubble constant in
Section 7. We discuss the limitations of the current work and lay
out the path forward in Section 8 and finally conclude in Section
9.

All the software used in this analysis is open source and
we share the analysis scripts and pipeline with the community
� here5. Numerical tests on the impact of the MST are performed
with �����������6 (Birrer & Amara 2018; Birrer et al. 2015).
The kinematics is modeled with the �����������.G����� mod-
ule. The re-analysis of the SLACS lenses imaging data is per-
formed with �������7, a wrapper around ����������� for au-

4 Noting however the caveats on the realism of the TDLMC simulations
discussed by Ding et al. (2020).
5 https://github.com/TDCOSMO/hierarchy_analysis_2020_

public/

6 � https://github.com/sibirrer/lenstronomy

7 � https://github.com/ajshajib/dolphin

tomated lens modeling (Shajib et al. prep) and we introduce ��-
��A��8 (this work) for the hierarchical sampling in conjunction
with �����������. All components of the analysis - including
analysis scripts and software - were reviewed internally by peo-
ple not previously involved in the analysis of the sample before
the joint inference was performed. All uncertainties stated are
given in 16th, 50th and 84th percentiles. Error contours in plots
represent 68th and 95th credible regions.

As in previous work by our team - in order to avoid exper-
imenter bias - we keep our analysis blind by using previously
blinded analysis products, and all additional choices made in this
analysis, e.g. considering model parameterization and including
or excluding of data, are assessed blindly in regard to H0 or pa-
rameters directly related to it. All sections, except Section 8.5, of
this paper have been written and frozen before the unblinding of
the results.

2. Cosmography from individual lenses and the
mass-sheet degeneracy

In this section we review the principles of time-delay cosmog-
raphy and the underlying observables (Section 2.1 for lensing
and time delays and Section 2.2 for the kinematic observables).
We emphasize how a MST a�ects the observables and thus the
inference of cosmographic quantities (Section 2.3). We separate
the physical origin of the MST into the line-of-sight (external
MST, Section 2.4) and mass-profile contributions (internal MST,
Section 2.5) and then provide the limits on the internal mass
profile constraints from imaging data and plausibility arguments
in Section 2.6. We provide concluding remarks on the constrain-
ing power of individual lenses for time-delay cosmography in
Section 2.7.

2.1. Cosmography with strong lenses

In this section we state the relevant governing physical principles
and observables in terms of imaging, time delays, and stellar
kinematics.

The phenomena of gravitational lensing can be described by
the lens equation, which maps the source plane � to the image
plane ✓ (2D vectors on the plane of the sky)

� = ✓ � ↵(✓), (1)

where ↵ is the angular shift on the sky between the original
unlensed and the lensed observed position of an object.

For a single lensing plane, the lens equation can be expressed
in terms of the physical deflection angle ↵̂ as

� = ✓ � Ds
Dds

↵̂(✓), (2)

with Ds, Dds is the angular diameter distance from the observer
to the source and from the deflector to the source, respectively.

In the single lens plane regime we can introduce the lensing
potential  such that

↵(✓) = r (✓) (3)

and the lensing convergence as

(✓) = 1
2
r2 (✓). (4)

8 � https://github.com/sibirrer/hierarc
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Fig. A.1: Illustration of the power-law profile (Eqn. 39) in three dimensions (left panel) and in projection (right panel) under an
approximate MST with a cored mass component (Eqn. 37). The transforms presented here were indistinguishable by the mock
imaging data of Figure A.2. � source

Fig. A.2: Mock HST image with a power-law mass profile for
which we perform the inference on the detectability of an ap-
proximate MST. � source

The model covariance matrix for the time delays can be ex-
pressed as

⌃2
�tmodel = cov

�
��Fermat,��Fermat

� ✓
�

D�t

c

◆2
, (C.8)

the covariance matrix on the kinematics as

⌃2
�model = cov

⇣p
JAi0,

q
JA j0

⌘
c

2 Ds
Dds
�
q
�Ai (�ani)�A j (�ani)

(C.9)

and the cross-covariance between the kinematics and the time
delays as

⌃2
�t�model = cov

⇣
��Fermat,

q
JA j0

⌘
D�t

r
Ds
Dds
�3/2

q
�A j (�ani).

(C.10)

In this form, the model covariances are explicitly dependent on
the anisotropy model, the MST and the cosmology.

The covariance between the kinematics and the time delays,
⌃2
�t�model, above in Equation (C.10) is primarily impacted by the

average density slope parameter � of the mass model. � a�ects
both the kinematics and the Fermat potential and uncertainty in �
can lead to covariances. However, if the density slope parameter
is well constrained by imaging data (modulo explicit MST), the
covariance in Equation (C.10) becomes sub-dominant relative to
the uncertainty in the measurement of the kinematics.

When setting ⌃2
�t�model = 0, we can separate the inference

of D�t/� from the kinematics likelihood and can work directly
on the D�t/� posteriors from the inference from the image data,
Dimage, and the time-delay measurement, Dtd,

p(Dtd,Dimage |D�t/�) =
π

p(Dimage |⇠mass, ⇠ light)

⇥ p(Dtd |⇠mass,D�t/�)p(⇠mass, ⇠ light)d⇠massd⇠ light. (C.11)

This allows us to use individually sampled angular diameter dis-
tance posteriors (expression 40) without sampling an additional
MST and then transform them in post-processing. This is appli-
cable for both, external convergence and internal MST and we
e�ectively evaluate the likelihood on the one-dimensional poste-
rior density in D�t/�.

In the same way as for the time-delay likelihood, we can
perform the marginalization of the kinematics likelihood over
the imaging data constraints

p(Dspec,Dimg |�ani,Ds/Dds, �) =π
p(Dimg |⇠mass, ⇠ light)p(Dspec |⇠mass, ⇠ light, �ani,Ds/Dds, �)

⇥ p(⇠mass, ⇠ light)d⇠massd⇠ light. (C.12)

Appendix D: TDLMC inference with more general
anisotropy models

In this work, we presented inferences based on the anisotropy
parameterization by Osipkov (1979); Merritt (1985) (Eqn. 51).
In this Appendix we perform the inference on the TDLMC with a
more general anisotropy parameterization. Agnello et al. (2014a)
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a cosmological-dependent and cosmology-independent part, as
(Birrer et al. 2016, 2019)

(�P)2 = Ds
Dds

c
2
J(⇠mass, ⇠ light, �ani) (17)

where J(⇠mass, ⇠ light, �ani) is the dimensionless and cosmology-
independent term of the Jeans equation only relying on the an-
gular units in the light, mass and anisotropy model.

Inverting Equation 17 illustrates that a measured velocity
dispersion, �P, allows us to constrain the distance ratio Ds/Dds,
independent of the cosmological model and time delays but while
relying on the same lens model, ⇠ lens,

Ds
Dds
=

(�P)2
c2J(⇠ lens, ⇠ light, �ani)

. (18)

We note that the distance ratio Ds/Dds can be constrained
without time delays being available. If one has kinematic and
time-delay data, instead of expressing constraints on Ds/Dds,
one can also express the cosmologically independent constraints
in terms of Dd (e.g. Paraficz & Hjorth 2009; Jee et al. 2015;
Birrer et al. 2019) as

Dd =
1

(1 + zd)
c�tAB

��AB(⇠ lens)
c

2
J(⇠ lens, ⇠ light, �ani)

(�P)2 . (19)

In this work, we do not transform the kinematics constraints into
Ds/Dds or Dd constraints but work directly on the likelihood level
of the velocity dispersion when discriminating between di�erent
cosmological models.

In Appendix B we illustrate the radial dependence on the
model predicted velocity dispersion, �P, for di�erent stellar
anisotropy models. Observations at di�erent projected radii can
partially break the mass-anisotropy degeneracy provided that we
have independent mass profile estimates from lensing observ-
ables.

2.3. Mass-sheet transform

The mass-sheet transform (MST) is a multiplicative transform of
the lens Equation (Eqn. 1) (Falco et al. 1985)

�� = ✓ � �↵(✓) � (1 � �)✓, (20)

which preserves image positions (and any higher order relative
di�erentials of the lens equation) under a linear source displace-
ment � ! ��. The term (1��)✓ in Equation 20 above describes
an infinite sheet of convergence (or mass), and hence the name
mass-sheet transform. Only observables related to the absolute
source size, intrinsic magnification or to the lensing potential are
able to break this degeneracy.

The convergence field transforms according to

�(✓) = � ⇥ (✓) + (1 � �) . (21)

The same relative lensing observables can result if the mass
profile is scaled by the factor � with the addition of a sheet of
convergence (or mass) of (✓) = (1 � �).

The di�erent observables described in Section 2.1 & 2.2
transform by a MST term � as follow:

The image positions remain invariant

✓� = ✓ . (22)

The source position scales with �

�� = ��. (23)

The time delay scales with �

�tAB� = ��tAB (24)

and the velocity dispersion scales with � as

�P
v � =

p
��P

v . (25)

Until now we have only stated how the MST impacts ob-
servables directly. However, it is also useful to describe how
cosmographic constraints derived from a set of observables and
assumptions on the mass profile are transformed when transform-
ing the lens model with a MST (Eqn. 8, 18, 19). The time-delay
distance (Eqn. 7) is dependent on the time delay �t (Eqn. 5)

D�t � = �
�1

D�t . (26)

The distance ratio constrained by the kinematics and the lens
model scales as

(Ds/Dds)� = ��1
Ds/Dds. (27)

Given time-delay and kinematics data the inference on the angular
diameter distance to the lens is invariant under the MST

Dd� = Dd. (28)

The Hubble constant, when inferred from the time-delay distance,
D�t , transforms as (from Eqn. 9)

H0� = �H0. (29)

Mathematically, all the MSTs can be equivalently stated as a
change in the angular diameter distance to the source

Ds ! �Ds. (30)

In other words, if one knows the dependence of any lensing
variable upon Ds one can transform it under the MST and scale
all other quantities in the same way.

2.4. Line-of-sight contribution

Structure along the line of sight of lenses induce distortions and
focusing (or de-focusing) of the light rays. The first-order shear
distortions do have an observable imprint on the shape of Einstein
rings and can thus be constrained as part of the modeling proce-
dure of strong lensing imaging data. The first order convergence
e�ect alters the angular diameter distances along the specific line
of sight of the strong lens. We define D

lens as the specific angular
diameter distance along the line of sight of the lens and D

bkg as
the angular diameter distance from the homogeneous background
metric without any perturbative contributions. D

lens and D
bkg are

related through the convergence terms as

D
lens
d = (1 � d)Dbkg

d

D
lens
s = (1 � s)Dbkg

s

D
lens
ds = (1 � ds)Dbkg

ds .

(31)

s is the integrated convergence along the line of sight passing
through the strong lens to the source plane and the term 1 � s
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TDCOSMO IV: Hierarchical time-delay cosmography -  
joint inference of the Hubble constant and galaxy density profiles
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Cosmographic analysis of the doubly imaged quasar SDSS 1206+4332 3

ring. This configuration allows for a very similar analysis as recently
applied for quadruply lensed quasars (Suyu et al. 2010, 2014; Birrer
et al. 2016; Wong et al. 2017). We expect that many similar examples
with relatively high surface brightness parts of quasar host galaxy
crossing the inner caustic can be found as hundreds of doubles are
discovered, and thus our analysis can serve as a pathfinder for much
larger samples.

We self-consistently incorporate new high resolution HST
imaging data with existing kinematics data of Agnello et al. (2016),
quasar light curves monitoring data of Eulaers et al. (2013) (here-
after, E13), and a LOS analysis in a Bayesian hierarchical model.
We provide the full likelihood of the cosmographic analysis that en-
ables a self-consistent combined analysis with other strong lenses
and other cosmographic probes. We also provide a new determina-
tion of the Hubble constant, independent of the local and inverse
distance ladder method. Finally, since our new blind measurement
is consistent with the previous H0LiCOW collaboration measure-
ments, we combine the likelihood from the four lenses to provide
an updated TDSL measurement of the Hubble constant with ⇠ 3
per cent precision in a flat ⇤CDM cosmology.

The paper is structured as follows: In Section 2, we describe
the basics of time-delay cosmography and outline the steps of our
analysis. Section 3 describes the lens system SDSS 1206+4332 and
the data used in our analysis. We describe the model choices and
di�erent options we assess in our analysis in Section 4. We then go
through the forward modelling of the di�erent data sets in Section 5.
Section 6 describes the LOS analysis. We describe the combined
Bayesian hierarchical analysis in Section 7. We present our results
in Section 8 and summarize our work in Section 9.

Crucially, the analysis presented in this work through Section 2
- 7 was laid out and executed blindly with respect to the cosmo-
graphic result and in particular the value of the Hubble constant.
The blinding is built in the software, by subtracting the average of
every posterior distribution function before revealing it to the in-
vestigator. The scripts and pipelines are then frozen before the cos-
mological inference is unblinded. We displayed the cosmographic
likelihood and the inference of the cosmological parameters only
after all co-authors involved in the time-delay analysis have agreed
that the analysis was satisfactory. The submission of this manuscript
followed shortly after the unblinding with only minor changes in the
text for clarity and updated figures.

The analysis and the lens modelling are performed with the
publicly available software �����������3 (Birrer & Amara 2018;
Birrer et al. 2015) version 0.3.3 and the reduced data products
and the lens modelling scripts are made publicly available after
acceptance of the manuscript.

2 OUTLINE OF THE ANALYSIS

We combine time-delay measurements between the two images of
the quasar, �tAB, Hubble Space Telescope (HST) imaging data,
dHST, stellar kinematics of the deflector galaxy, �P, and wide field
imaging and spectroscopy of the environment of the lens, denv, to
measure angular diameter distances and hence the Hubble constant.
We specifically denote dHST as the data vector of individual pixel
values of the imaging data and denv the collection of objects with
their photometric and spectoscopical measurements.

3 https://lenstronomy.readthedocs.io

This section outlines our analysis. We describe the observ-
ables and how they relate to the underlining cosmological model
(Section 2.1), highlight the cosmographic constraining power of the
combined data sets (Section 2.2), layout the formal notation of the
combined Bayesian analysis of this work (Section 2.3), and highlight
our strategy in regards to lensing degeneracies and other potential
systematics (Section 2.4). The details of the modelling choices are
presented in Sections 4 and 5.

2.1 Observables

The excess time delay (see e.g. Schneider et al. 1992) of an image at
✓ with corresponding source position � relative to an unperturbed
path is

t(✓, �) = (1 + zd)
c

DdDs
Dds

 (✓ � �)2
2

�  (✓)
�
, (1)

where zd is the redshift of the deflector, c the speed of light,  the
lensing potential and Dd, Ds and Dds the angular diameter distances
from the observer to the deflector, from the observer to the source
and from the deflector to the source, respectively.

The relative time delay between two images A and B is

�tAB =
D�t

c
[�(✓A, �) � �(✓B, �)] , (2)

where

�(✓, �) =
 (✓ � �)2

2
�  (✓)

�
(3)

is the Fermat potential and

D�t ⌘ (1 + zd)
DdDs
Dds

(4)

is the so-called time-delay distance.
The lensing potential,  , and the true source position, �, re-

quired for the prediction of the time delay, can be inferred by mod-
elling the appearance of multiply imaged structure in high resolution
imaging data, dHST. Comparison with the data allows us to constrain
the parameters of the lens model, ⇠ lens, and the parameters of the
surface brightness distribution of the deflector and lensed source
model, ⇠ light, and their covariances.

The details of the mass distribution along the LOS can signif-
icantly impact observables and thus need to be taken into account
(see e.g. McCully et al. 2017; Rusu et al. 2017; Sluse et al. 2017;
Birrer et al. 2017a; Tihhonova et al. 2018). Large scale structure
primarily introduces second order distortions in the form of shear
and convergence. Perturbers very close to the LOS of the main
lens can induce higher order perturbations (flexion and beyond) that
need to be modelled explicitly to accurately account for their e�ect
on the observables. In our analysis, we model the nearest massive
galaxies explicitly while the larger scale structure is accounted by a
convergence and an external shear term (see Wong et al. 2017, for
a similar approach).

The LOS convergence e�ectively alters the specific angular
diameter distances relevant to the lensing system, D

0, relative to the
homogeneous background metric, D

bkg. We take into account the
external convergence factor, ext, perturbing the time-delay distance,
D�t , (Suyu et al. 2010):

D
0
�t ⌘ (1 � ext) D

bkg
�t
, (5)

where D
0
�t

indicates the time-delay distance along the specific LOS
corresponding to the explicit lens model and D

bkg
�t

corresponds to the
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Fig. 1: Illustration of a composite profile consisting of a stellar component (Hernquist profile, dotted lines) and a dark matter
component (NFW + cored component (Eqn. 37), dashed lines) which transform according to an approximate MST (joint as solid
lines). The stellar component gets rescaled by the MST while the cored component transforms the dark matter component. Left: profile
components in three dimensions. Right: profile components in projection. The transforms presented here cannot be distinguished
by imaging data alone and require i.e. stellar kinematics constraints. � source

where �pl is the logarithmic slope of the profile, qm is the axis
ratio of the minor and the major axes of the elliptical profile, and
✓E is the Einstein radius. The coordinate system is defined such
that ✓1 and ✓2 are along the major and minor axis respectively.
We also add an external shear model component with distortion
amplitude �ext and direction �ext. The PEMD+shear model is one
of two lens models considered in the analysis of the TDCOSMO
sample. For the source and lens galaxies we use elliptical Sér-
sic surface brightness profiles. We add a Gaussian Point Spread
Function (PSF) with Full-Width-at-Half-Maximum (FWHM) of
000.1, pixel scale of 000.05 and noise properties consistent with the
current TDCOSMO sample of Hubble Space Telescope (HST)
images. The time delays between the images between the first
arriving image and the subsequent images are 11.7, 27.6, and
94.0 days, respectively. We chose time-delay uncertainties of ±2
days between the three relative delays. The time-delay precision
does not impact our conclusions about the MST. The inference is
performed on the pixel level of the mock image as with the real
data on the TDCOSMO sample.

In the modeling and parameter inference, we add an additional
cored mass component (Eqn 37) and perform the inference on
all the lens and source parameters simultaneously, including the
core radius Rc and the projected core density ⌃c. In the limit of a
perfect MST there is a mathematical degeneracy if we only use
the imaging data as constraints. We thus expect a full covariance
in the parameters involved in the MST (Einstein radius of the
main deflector, source position, source size etc) and the posterior
inference of our problem to be ine�cient in the regime where the
cored profile mimics the full MST (c(✓) acts as ⌃c for Rc ! 1).
To improve the sampling, instead of modeling the cored profile
c(✓), we model the di�erence between the cored component and
a perfect MST, �c = c(✓)�⌃c with �c (Eqn. 35) instead. �c is
e�ectively the component of the model that does not transform
under the MST and leads to a physical three-dimensional profile
interpretation.

Figure 2 shows the inference on the relevant lens model pa-
rameters for the mock image described in Appendix A. The input
parameters are marked as orange lines for the model without a
cored component. We can clearly see that for small core radii,
Rc, the approximate MST parameter �c can be constrained. This
is the limit where the additional core profile cannot mimic a pure
MST at a level where the data is able to distinguish between them.

For core radii Rc = 3✓E, the uncertainty on the approximate MST,
�c, is 10%. For core radii Rc > 5✓E, the approximate MST is very
close to the pure MST and the imaging information in our exam-
ple is not able to constrain �c to better than �c ± 0.4. We make
use of the expected constraining power on �c as a function of
Rc when we discuss the plausibility of certain transforms. When
looking at the inferred time-delay distance �cD�t , we see that this
quantity is constant as a function of Rc and thus the time-delay
prediction is accurately being transformed by a pure MST (Eqn.
24). Overall, we find that �c ⇡ �int is valid for larger core radii.

Identical tests with a composite profile instead of a PEMD
profile result in the same conclusions and are available � here.

2.6.2. Allowed cored mass components from physical

boundary conditions

In the previous section (2.6.1) we demonstrated that, for large
core radii, there are physical profiles that approximate a pure
MST (�c ⇡ �int). In this section we take a closer look at the
physical interpretation of such large positive and negative cored
component transforms with respect to a chosen mass profile. It is
possible that the core model itself does not require a physical in-
terpretation as it is overall included in the total mass distribution.
The galaxy surface brightness provides constraints on the stellar
mass distribution (modulo a mass-to-light conversion factor) and
the focus here is a consideration of the distribution of the invisi-
ble (dark) matter component of the deflector. Our starting model
is a NFW profile and we assess departures from this model by
using a cored component.

We apply the following conservative boundary conditions on
the distribution of the dark matter component:

1. The total mass of the cored component within a three-
dimensional radius shall not exceed the total mass of the NFW
profile within the same volume, Mcore(< r)  MNFW(< r).
This is not a strict bound, but violating this condition would
imply changing the mass of the halo itself.

2. The density profile shall never drop to negative values,
⇢NFW+core(r) � 0.

Those two imposed conditions define a physical interpretation
of a three-dimensional mass profile as being a re-distribution of
matter from the dark matter component and a rescaling of the
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Fig. 3: Constraints on an approximate internal MST transform
with a cored component, �c, of an NFW profile as a function of
core radius. In gray are the 1-� exclusion limits that imaging data
can provide. In orange is the region where the total mass of the
core within a three-dimensional radius exceeds the mass of the
NFW profile in the same sphere. In blue is the region where the
transformed profile results in negative convergence at the core
radius. The white region is e�ectively allowed by the imaging
data and simple plausibility considerations and where we can use
the mathematical MST as an approximation (�c ⇡ �int). The halo
mass, concentration and the redshift configuration is displayed in
the lower left box. � source

ing (Section 2.2) and compute the predicted velocity dispersion
in an aperture under realistic seeing conditions (Eqn. 16) for
models with a cored mass component as an approximation of the
MST.

Figure 4 compares the actual predicted kinematics from the
modeling of the physical three-dimensional mass distribution �c
(Eqn. 35) and the analytic relation of a perfect MST (Eqn. 25)
for the mock lens presented in Appendix A. For this figure, we
chose an aperture size of 100 ⇥ 100 and seeing of FWHM = 000.7
and an isotropic stellar orbit distribution (�ani(r) = 0). For �c
in the range [0.8, 1.2], the MST approximation in the predicted
velocity dispersion is accurate to <1%. We conclude that, for the
�int range considered in this work, the analytic approximation of
a perfect MST is valid to reliably compute the predicted velocity
dispersion. The precise dependence of the velocity dispersion
only marginally depends on the specific core radius Rc and the
approximation remains valid for all reasonable and non-excluded
core radii and �int. We tested that our conclusions also hold for
di�erent anisotropy profiles and observational conditions.

2.7. Constraining power using individual lenses

For each individual strong lens in the TDCOSMO sample, there
are four data sets available: (i) imaging data of the strong lensing
features and the deflector galaxy, Dimg; (2) time-delay measure-
ments between the multiple images, Dtd; (3) stellar kinematics
measurement of the main deflector galaxy,Dspec; (4) line-of-sight
galaxy count and weak lensing statistics, Dlos.

These data sets are independent and so are their likelihoods
in a joint cosmographic inference. Hence, we can write the like-
lihood of the joint set of the data D = {Dimg,Dtd,Dspec,Dlos}

Fig. 4: Comparison of the actual predicted kinematics from the
modeling of the physical three-dimensional mass distribution �int
(Eqn. 35) for varying core sizes (solid) and the analytic relation
of a perfect MST (Eqn. 25, dashed) for the mock lens presented
in Figure A.2. Lower panel shows the fractional di�erences be-
tween the exact prediction and a perfect MST calculation. The
MST prediction matches to <1% in the considered range. Minor
numerical noise is present at the sub-percent level. � source

given the cosmographic parameters {Dd,Ds,Dds} ⌘ Dd,s,ds as

L(D|Dd,s,ds) =
π

L(Dimg |⇠mass, ⇠ light) (40)

⇥L(Dtd |⇠mass, ⇠ light, �,D�t ) (41)
⇥L(Dspec |⇠mass, ⇠ light, �ani, �,Ds/Dds)L(Dlos |ext) (42)

⇥p(⇠mass, ⇠ light, �int, ext, �ani)d⇠massd⇠ lightd�intdextd�ani. (43)

In the expression above we only included the relevant model com-
ponents in the expressions of the individual likelihoods. ⇠ light
formally includes the source and lens light surface brightness.
For the time-delay likelihood, we only consider the time-variable
source position from the set of ⇠ light parameters. In Appendix C
we provide details on the computation of the combined likeli-
hood, in particular with application in the hierarchical context.

An approximate internal MST of a power law with �int of
10% still leads to physically interpretable mass profiles with the
Hubble constant changed by 10% (see Eqn. 29). Imaging data is
not su�ciently able to distinguish between models producing H0
value within this 10% range (Kochanek 2020a). The kinematics
are changed with good approximation by Equation 25 through this
transform. The kinematic prediction is also cosmology dependent
by Equation 17. The scalings of a MST are analytical in the
model-predicted time-delay distance and kinematics and thus
its marginalization can be performed in post processing given
posteriors for a specific lens model family that breaks the MST,
e.g. a power-law model.

The kinematics information is the decisive factor in discrim-
inating di�erent profile families. The relative uncertainty in the
velocity dispersion measurement directly propagates into the rel-
ative uncertainty in the MST as

��int
�int

= 2
��P

�P . (44)

The current uncertainties on the velocity dispersion measure-
ments, of the order of 5-10% (including the uncertainties due
to stellar template mismatch and other systematic errors) limit
the precise determination of the mass profile per individual lens.
Uncertainties in the interpretation of the stellar anisotropy orbit
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a cosmological-dependent and cosmology-independent part, as
(Birrer et al. 2016, 2019)

(�P)2 = Ds
Dds

c
2
J(⇠mass, ⇠ light, �ani) (17)

where J(⇠mass, ⇠ light, �ani) is the dimensionless and cosmology-
independent term of the Jeans equation only relying on the an-
gular units in the light, mass and anisotropy model.

Inverting Equation 17 illustrates that a measured velocity
dispersion, �P, allows us to constrain the distance ratio Ds/Dds,
independent of the cosmological model and time delays but while
relying on the same lens model, ⇠ lens,

Ds
Dds
=

(�P)2
c2J(⇠ lens, ⇠ light, �ani)

. (18)

We note that the distance ratio Ds/Dds can be constrained
without time delays being available. If one has kinematic and
time-delay data, instead of expressing constraints on Ds/Dds,
one can also express the cosmologically independent constraints
in terms of Dd (e.g. Paraficz & Hjorth 2009; Jee et al. 2015;
Birrer et al. 2019) as

Dd =
1

(1 + zd)
c�tAB

��AB(⇠ lens)
c

2
J(⇠ lens, ⇠ light, �ani)

(�P)2 . (19)

In this work, we do not transform the kinematics constraints into
Ds/Dds or Dd constraints but work directly on the likelihood level
of the velocity dispersion when discriminating between di�erent
cosmological models.

In Appendix B we illustrate the radial dependence on the
model predicted velocity dispersion, �P, for di�erent stellar
anisotropy models. Observations at di�erent projected radii can
partially break the mass-anisotropy degeneracy provided that we
have independent mass profile estimates from lensing observ-
ables.

2.3. Mass-sheet transform

The mass-sheet transform (MST) is a multiplicative transform of
the lens Equation (Eqn. 1) (Falco et al. 1985)

�� = ✓ � �↵(✓) � (1 � �)✓, (20)

which preserves image positions (and any higher order relative
di�erentials of the lens equation) under a linear source displace-
ment � ! ��. The term (1��)✓ in Equation 20 above describes
an infinite sheet of convergence (or mass), and hence the name
mass-sheet transform. Only observables related to the absolute
source size, intrinsic magnification or to the lensing potential are
able to break this degeneracy.

The convergence field transforms according to

�(✓) = � ⇥ (✓) + (1 � �) . (21)

The same relative lensing observables can result if the mass
profile is scaled by the factor � with the addition of a sheet of
convergence (or mass) of (✓) = (1 � �).

The di�erent observables described in Section 2.1 & 2.2
transform by a MST term � as follow:

The image positions remain invariant

✓� = ✓ . (22)

The source position scales with �

�� = ��. (23)

The time delay scales with �

�tAB� = ��tAB (24)

and the velocity dispersion scales with � as

�P
v � =

p
��P

v . (25)

Until now we have only stated how the MST impacts ob-
servables directly. However, it is also useful to describe how
cosmographic constraints derived from a set of observables and
assumptions on the mass profile are transformed when transform-
ing the lens model with a MST (Eqn. 8, 18, 19). The time-delay
distance (Eqn. 7) is dependent on the time delay �t (Eqn. 5)

D�t � = �
�1

D�t . (26)

The distance ratio constrained by the kinematics and the lens
model scales as

(Ds/Dds)� = ��1
Ds/Dds. (27)

Given time-delay and kinematics data the inference on the angular
diameter distance to the lens is invariant under the MST

Dd� = Dd. (28)

The Hubble constant, when inferred from the time-delay distance,
D�t , transforms as (from Eqn. 9)

H0� = �H0. (29)

Mathematically, all the MSTs can be equivalently stated as a
change in the angular diameter distance to the source

Ds ! �Ds. (30)

In other words, if one knows the dependence of any lensing
variable upon Ds one can transform it under the MST and scale
all other quantities in the same way.

2.4. Line-of-sight contribution

Structure along the line of sight of lenses induce distortions and
focusing (or de-focusing) of the light rays. The first-order shear
distortions do have an observable imprint on the shape of Einstein
rings and can thus be constrained as part of the modeling proce-
dure of strong lensing imaging data. The first order convergence
e�ect alters the angular diameter distances along the specific line
of sight of the strong lens. We define D

lens as the specific angular
diameter distance along the line of sight of the lens and D

bkg as
the angular diameter distance from the homogeneous background
metric without any perturbative contributions. D

lens and D
bkg are

related through the convergence terms as

D
lens
d = (1 � d)Dbkg

d

D
lens
s = (1 � s)Dbkg

s

D
lens
ds = (1 � ds)Dbkg

ds .

(31)

s is the integrated convergence along the line of sight passing
through the strong lens to the source plane and the term 1 � s
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a cosmological-dependent and cosmology-independent part, as
(Birrer et al. 2016, 2019)

(�P)2 = Ds
Dds

c
2
J(⇠mass, ⇠ light, �ani) (17)

where J(⇠mass, ⇠ light, �ani) is the dimensionless and cosmology-
independent term of the Jeans equation only relying on the an-
gular units in the light, mass and anisotropy model.

Inverting Equation 17 illustrates that a measured velocity
dispersion, �P, allows us to constrain the distance ratio Ds/Dds,
independent of the cosmological model and time delays but while
relying on the same lens model, ⇠ lens,

Ds
Dds
=

(�P)2
c2J(⇠ lens, ⇠ light, �ani)

. (18)

We note that the distance ratio Ds/Dds can be constrained
without time delays being available. If one has kinematic and
time-delay data, instead of expressing constraints on Ds/Dds,
one can also express the cosmologically independent constraints
in terms of Dd (e.g. Paraficz & Hjorth 2009; Jee et al. 2015;
Birrer et al. 2019) as

Dd =
1

(1 + zd)
c�tAB

��AB(⇠ lens)
c

2
J(⇠ lens, ⇠ light, �ani)

(�P)2 . (19)

In this work, we do not transform the kinematics constraints into
Ds/Dds or Dd constraints but work directly on the likelihood level
of the velocity dispersion when discriminating between di�erent
cosmological models.

In Appendix B we illustrate the radial dependence on the
model predicted velocity dispersion, �P, for di�erent stellar
anisotropy models. Observations at di�erent projected radii can
partially break the mass-anisotropy degeneracy provided that we
have independent mass profile estimates from lensing observ-
ables.

2.3. Mass-sheet transform

The mass-sheet transform (MST) is a multiplicative transform of
the lens Equation (Eqn. 1) (Falco et al. 1985)

�� = ✓ � �↵(✓) � (1 � �)✓, (20)

which preserves image positions (and any higher order relative
di�erentials of the lens equation) under a linear source displace-
ment � ! ��. The term (1��)✓ in Equation 20 above describes
an infinite sheet of convergence (or mass), and hence the name
mass-sheet transform. Only observables related to the absolute
source size, intrinsic magnification or to the lensing potential are
able to break this degeneracy.

The convergence field transforms according to

�(✓) = � ⇥ (✓) + (1 � �) . (21)

The same relative lensing observables can result if the mass
profile is scaled by the factor � with the addition of a sheet of
convergence (or mass) of (✓) = (1 � �).

The di�erent observables described in Section 2.1 & 2.2
transform by a MST term � as follow:

The image positions remain invariant

✓� = ✓ . (22)

The source position scales with �

�� = ��. (23)

The time delay scales with �

�tAB� = ��tAB (24)

and the velocity dispersion scales with � as

�P
v � =

p
��P

v . (25)

Until now we have only stated how the MST impacts ob-
servables directly. However, it is also useful to describe how
cosmographic constraints derived from a set of observables and
assumptions on the mass profile are transformed when transform-
ing the lens model with a MST (Eqn. 8, 18, 19). The time-delay
distance (Eqn. 7) is dependent on the time delay �t (Eqn. 5)

D�t � = �
�1

D�t . (26)

The distance ratio constrained by the kinematics and the lens
model scales as

(Ds/Dds)� = ��1
Ds/Dds. (27)

Given time-delay and kinematics data the inference on the angular
diameter distance to the lens is invariant under the MST

Dd� = Dd. (28)

The Hubble constant, when inferred from the time-delay distance,
D�t , transforms as (from Eqn. 9)

H0� = �H0. (29)

Mathematically, all the MSTs can be equivalently stated as a
change in the angular diameter distance to the source

Ds ! �Ds. (30)

In other words, if one knows the dependence of any lensing
variable upon Ds one can transform it under the MST and scale
all other quantities in the same way.

2.4. Line-of-sight contribution

Structure along the line of sight of lenses induce distortions and
focusing (or de-focusing) of the light rays. The first-order shear
distortions do have an observable imprint on the shape of Einstein
rings and can thus be constrained as part of the modeling proce-
dure of strong lensing imaging data. The first order convergence
e�ect alters the angular diameter distances along the specific line
of sight of the strong lens. We define D

lens as the specific angular
diameter distance along the line of sight of the lens and D

bkg as
the angular diameter distance from the homogeneous background
metric without any perturbative contributions. D

lens and D
bkg are

related through the convergence terms as

D
lens
d = (1 � d)Dbkg

d

D
lens
s = (1 � s)Dbkg

s

D
lens
ds = (1 � ds)Dbkg

ds .

(31)

s is the integrated convergence along the line of sight passing
through the strong lens to the source plane and the term 1 � s
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Fig. A.1: Illustration of the power-law profile (Eqn. 39) in three dimensions (left panel) and in projection (right panel) under an
approximate MST with a cored mass component (Eqn. 37). The transforms presented here were indistinguishable by the mock
imaging data of Figure A.2. � source

Fig. A.2: Mock HST image with a power-law mass profile for
which we perform the inference on the detectability of an ap-
proximate MST. � source

The model covariance matrix for the time delays can be ex-
pressed as

⌃2
�tmodel = cov

�
��Fermat,��Fermat

� ✓
�

D�t

c

◆2
, (C.8)

the covariance matrix on the kinematics as

⌃2
�model = cov

⇣p
JAi0,

q
JA j0

⌘
c

2 Ds
Dds
�
q
�Ai (�ani)�A j (�ani)

(C.9)

and the cross-covariance between the kinematics and the time
delays as

⌃2
�t�model = cov

⇣
��Fermat,

q
JA j0

⌘
D�t

r
Ds
Dds
�3/2

q
�A j (�ani).

(C.10)

In this form, the model covariances are explicitly dependent on
the anisotropy model, the MST and the cosmology.

The covariance between the kinematics and the time delays,
⌃2
�t�model, above in Equation (C.10) is primarily impacted by the

average density slope parameter � of the mass model. � a�ects
both the kinematics and the Fermat potential and uncertainty in �
can lead to covariances. However, if the density slope parameter
is well constrained by imaging data (modulo explicit MST), the
covariance in Equation (C.10) becomes sub-dominant relative to
the uncertainty in the measurement of the kinematics.

When setting ⌃2
�t�model = 0, we can separate the inference

of D�t/� from the kinematics likelihood and can work directly
on the D�t/� posteriors from the inference from the image data,
Dimage, and the time-delay measurement, Dtd,

p(Dtd,Dimage |D�t/�) =
π

p(Dimage |⇠mass, ⇠ light)

⇥ p(Dtd |⇠mass,D�t/�)p(⇠mass, ⇠ light)d⇠massd⇠ light. (C.11)

This allows us to use individually sampled angular diameter dis-
tance posteriors (expression 40) without sampling an additional
MST and then transform them in post-processing. This is appli-
cable for both, external convergence and internal MST and we
e�ectively evaluate the likelihood on the one-dimensional poste-
rior density in D�t/�.

In the same way as for the time-delay likelihood, we can
perform the marginalization of the kinematics likelihood over
the imaging data constraints

p(Dspec,Dimg |�ani,Ds/Dds, �) =π
p(Dimg |⇠mass, ⇠ light)p(Dspec |⇠mass, ⇠ light, �ani,Ds/Dds, �)

⇥ p(⇠mass, ⇠ light)d⇠massd⇠ light. (C.12)

Appendix D: TDLMC inference with more general
anisotropy models

In this work, we presented inferences based on the anisotropy
parameterization by Osipkov (1979); Merritt (1985) (Eqn. 51).
In this Appendix we perform the inference on the TDLMC with a
more general anisotropy parameterization. Agnello et al. (2014a)
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(a) Fit to the time-delay distance (b) Fit of velocity dispersion

Fig. 13: Illustration of the goodness of the fit of the maximum likelihood model of the joint analysis in describing the TDCOSMO
data set. Blue points are the measurements with the diagonal elements of the measurement covariance matrix. Orange points are
the model predictions with the diagonal elements of the model covariance uncertainties. Left: Comparison of measured time-delay
distance from imaging data and time delays compared with the predicted value from the cosmological model, the internal and
external MST (and their distributions). Right: Comparison of the velocity dispersion measurements and the predicted values. In
addition to the MST terms, the uncertainty in the model also includes the uncertainty in the anisotropy distribution aani. For lenses
with multiple velocity dispersion measurements, the diagonal terms in the error covariance are illustrated. � source

Fig. 14: Illustration of the goodness of the fit of the maximum likelihood model of the joint analysis in describing the SDSS velocity
dispersion measurements of the 34 SLACS lenses in our sample. Blue points are the measurements with the diagonal elements of
the measurement covariance matrix. Orange points are the model predictions with the diagonal elements of the model covariance
uncertainties. The measurement uncertainties include the uncertainties in the quoted measurements and the additional uncertainty
of ��P,sys. The model uncertainties include the lens model uncertainties and the marginalization over the �int and aani distribution.
� source

Fig. 15: Illustration of the goodness of the fit of the maximum likelihood model of the joint analysis in describing the VIMOS
radially binned IFU velocity dispersion measurements of the 9 SLACS lenses with VIMOS data in our sample. Blue points are
the measurements with the diagonal elements of the measurement covariance matrix. Orange points are the model predictions
with the diagonal elements of the model covariance uncertainties. The measurement uncertainties include the uncertainties in the
quoted measurements and the additional uncertainty of ��P,sys. The model uncertainties include the lens model uncertainties and
the marginalization over the �int and aani distribution. � source
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(a) Fit to the time-delay distance (b) Fit of velocity dispersion

Fig. 13: Illustration of the goodness of the fit of the maximum likelihood model of the joint analysis in describing the TDCOSMO
data set. Blue points are the measurements with the diagonal elements of the measurement covariance matrix. Orange points are
the model predictions with the diagonal elements of the model covariance uncertainties. Left: Comparison of measured time-delay
distance from imaging data and time delays compared with the predicted value from the cosmological model, the internal and
external MST (and their distributions). Right: Comparison of the velocity dispersion measurements and the predicted values. In
addition to the MST terms, the uncertainty in the model also includes the uncertainty in the anisotropy distribution aani. For lenses
with multiple velocity dispersion measurements, the diagonal terms in the error covariance are illustrated. � source

Fig. 14: Illustration of the goodness of the fit of the maximum likelihood model of the joint analysis in describing the SDSS velocity
dispersion measurements of the 34 SLACS lenses in our sample. Blue points are the measurements with the diagonal elements of
the measurement covariance matrix. Orange points are the model predictions with the diagonal elements of the model covariance
uncertainties. The measurement uncertainties include the uncertainties in the quoted measurements and the additional uncertainty
of ��P,sys. The model uncertainties include the lens model uncertainties and the marginalization over the �int and aani distribution.
� source

Fig. 15: Illustration of the goodness of the fit of the maximum likelihood model of the joint analysis in describing the VIMOS
radially binned IFU velocity dispersion measurements of the 9 SLACS lenses with VIMOS data in our sample. Blue points are
the measurements with the diagonal elements of the measurement covariance matrix. Orange points are the model predictions
with the diagonal elements of the model covariance uncertainties. The measurement uncertainties include the uncertainties in the
quoted measurements and the additional uncertainty of ��P,sys. The model uncertainties include the lens model uncertainties and
the marginalization over the �int and aani distribution. � source
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Fig. 17: Illustration of the inferred mass profile of the joint TDCOSMO+SLACSSDSS+IFU analysis. A pure power-law with �pl =
2.10± 0.05 is shown in orange. In blue is the result of this work of �int = 0.91± 0.045 when interpreted as a cored mass component
with Rc uniform in [300, 1000]. Three dimensional density are illustrated on the left and the lensing convergence on the right. The
dashed vertical line on the right panels indicates the Einstein radius. Relative di�erence in respect to the power-law model are
presented in the bottom panels. � source

sometimes through repeated measurements. The nominal uncer-
tainties are thus accurate, resulting in the internal consistency of
all the TDCOSMO systems with a scatter on �int consistent with
zero19.

The SLACS-only analysis with the reported uncertainties of
the stellar velocity dispersions leads to an inferred scatter in
�int of about 10%. Assuming the same scatter in �int among the
TDCOSMO and SLACS lenses, the discrepancy in the inferred
�(�int) between the two samples indicates that the reported uncer-
tainties of the stellar velocity dispersions of the SLACS lenses do
not reflect the total uncertainty. For the present analysis, we have
addressed this issue by adding additional terms of uncorrelated
errors. However, future work should aim to improve the determi-
nation of systematics going back to the original data (or acquiring
better data), and contemplate the possibility of correlated cali-
bration errors, as due for example to the choice of stellar library
or instrumental setup. Second, our analysis is based on spherical
Jeans models, assuming anisotropy of the Osipkov–Merritt form.
These approximations are su�cient given the current uncertain-
ties and constraints, but future work should consider at least
axis-symmetric Jeans modeling (e.g., Cappellari 2008; Barnabè
et al. 2012; Posacki et al. 2015; Yıldırım et al. 2020), and consider
alternate parameterizations of anisotropy. Another possibility is
the use of axisymmetric modeling of the phase-space distribution
function with a two-integral Schwarzschild method by Cretton
et al. (1999); Verolme & de Zeeuw (2002) as performed by Barn-
abè & Koopmans (2007); Barnabè et al. (2009).

The addition of more freedom to the kinematic models will
require the addition of more empirical information that can be
obtained by spatially resolved data on distant lens galaxies, or
from high-quality data (including absorption line shapes) of ap-
propriately selected local elliptical galaxies.

8.3.2. Selection e↵ects of di↵erent lens samples

One key pillar in this analysis to improve the precision on the
H0 measurement from the TDCOSMO sample is the information

19 This statement has been tested with a flat prior on �(�int).

on the mass profiles of the SLACS sample. The SLACS sample
di�ers in terms of the redshift distribution and re�/✓E relative
to the TDCOSMO sample. Beyond our chosen explicit param-
eterized dependence of the MST parameter �int as a function
of re�/✓E we do not find trends in the predicted vs measured
velocity dispersion within the SLACS sample. However, we do
find di�erences in the external shear contributions between the
SLACS and TDCOSMO sample (Shajib et al. prep). This is ex-
pected because of selection e�ects. The TDCOSMO sample is
composed of quads at higher redshift than SLACS. So it is not
surprising that the TDCOSMO lenses tend to be more elongated
(to increase the size of the quad cross section) and be more im-
pacted by mass structure along the line of sight than SLACS.
Nonetheless, based on previous studies, we have no reason to
suspect that the deflectors themselves are intrinsically di�erent
between SLACS and TDCOSMO. Complex angular structure of
the lenses might also a�ect the inference in the power-law slope
�pl, as the angular degree of freedoms in our model assumptions
are, to some degree, limited (Kochanek 2020b). A study with
more lenses and particularly sampling the redshift range of the
TDCOSMO sample (see Fig. 16) would allow us to better test
our current underlying assumption and in case of a significant
redshift evolution to correct for it.

8.3.3. Line-of-sight structure

The investigation of the line-of-sight structure of strong gravita-
tional lenses of the TDCOSMO and the SLACS sample follows
a specific protocol to provide an individual PDF of the external
convergence, p(ext). In our current analysis, the statistical uncer-
tainty of the SLACS line-of-sight structure is sub-dominant.

In the future – as the other terms of the error budget shrink
and this one becomes more relevant – the following steps will
be necessary. First, the specific choice of N-body simulation and
semi-analytic galaxy evolution model will need to be re-visited.
Second, it will be necessary to investigate how to improve the
comparison with simulation products in order to further miti-
gate uncertainties. For instance, beyond galaxy number count
statistics, weak gravitational lensing observations can also add
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Table 6: Marginalized posteriors of our hierarchical Bayesian cosmography inference based on the priors and parameterization
specified in Table 5 for a flat ⇤CDM cosmology.

Data sets H0 [km s�1Mpc�1] �int,0 ↵� �(�int) aani �(aani) ��P,sys

TDCOSMO-only 74.5+5.6
�6.1 1.02+0.08

�0.09 0.00+0.07
�0.07 0.01+0.03

�0.01 2.32+1.62
�1.17 0.16+0.50

�0.14 -
TDCOSMO + SLACSIFU 73.3+5.8

�5.8 1.00+0.08
�0.08 �0.07+0.06

�0.06 0.07+0.09
�0.05 1.58+1.58

�0.54 0.15+0.47
�0.13 -

TDCOSMO + SLACSSDSS 67.4+4.3
�4.7 0.91+0.05

�0.06 �0.04+0.04
�0.04 0.02+0.04

�0.01 1.52+1.76
�0.70 0.28+0.45

�0.25 0.06+0.02
�0.02

TDCOSMO + SLACSSDSS+IFU 67.4+4.1
�3.2 0.91+0.04

�0.04 �0.07+0.03
�0.04 0.06+0.08

�0.04 1.20+0.70
�0.27 0.18+0.50

�0.15 0.06+0.02
�0.02

Fig. 12: Posterior distributions of the key parameters for the hierarchical inference. Blue: constraints from the TDCOSMO-only
sample. Violet: constraints with the addition of IFU data of 9 SLACS lenses to inform the anisotropy prior on the TDCOSMO
sample, TDCOSMO+SLACSIFU. Orange: constraints with a sample of 33 additional lenses with imaging and kinematics data (HST
imaging + SDSS spectra) from the SLACS sample, TDCOSMO+SLACSSDSS. Purple: Joint analysis of TDCOSMO and 33 SLACS
lenses with SDSS spectra of which 9 have VIMOS IFU data, TDCOSMO+SLACSSDSS+IFU. Priors are according to Table 5. The
68th percentiles of the 1D marginalized posteriors are presented in Table 6. The posteriors in H0 and �int,0 were held blinded during
the analysis. � source
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Fig. 18: Comparison of di�erent blind H0 measurements by the TDCOSMO collaboration, based on di�erent mass profile assump-
tions and data sets incorporated. All measurements presented on this plot were performed blindly with regard to the inference of
H0. The measurement on top is the combined H0LiCOW 6 lenses constraints presented by Wong et al. (2020), when averaging
power-law and composite NFW plus stars (with constant mass-to-light ratio) on a lens-by-lens basis without correlated errors among
the lenses. The next two measurements are from Millon et al. (2019) of the 7 TDCOSMO time-delay lenses (6 H0LiCOW lenses
and 1 STRIDES lens by Shajib et al. (2020)), when performing the inference assuming either a composite NFW plus stars (with
constant mass-to-light ratio) or the power-law mass density profile for the galaxy acting as a lens. In the lower panel, we show the
results from this work. The main di�erence with respect to previous work is that we have made virtually no assumption on the
radial mass density profile of the lens galaxy, and taken into account the covariance between the lenses. The analysis in this work is
constrained only by the stellar kinematics and fully accounts for the uncertainty related to the mass sheet transformation (MST). In
this framework, we obtain four measurements according to the datasets considered. The TDCOSMO-only inference is based on the
same set of 7 lenses as those by Millon et al. (2019). The inferred median value is the same, indicating no bias, and the uncertainties,
as expected, are larger. The next three measurements rely on external datasets from the SLACS survey, by making the assumption
that the lens galaxies in the two surveys are drawn from the same population. The TDCOSMO+SLACSIFU measurements uses, in
addition to the TDCOSMO sample, 9 lenses from the SLACS sample with IFU observations to inform the anisotropy prior applied
on the TDCOSMO lenses. The TDCOSMO+SLACSSDSS measurement comes from the joint analysis of the TDCOSMO sample and
33 SLACS lenses with SDSS spectroscopy. The TDCOSMO+SLACSSDSS+IFU presents the joint analysis of all three data sets, again
assuming self-similar distributions of the mass profiles and stellar anisotropy. The TDCOSMO-only and TDCOSMO+SLACSIFU
analyses do not rely on self-similar mass profiles of the SLACS and TDCOSMO sample while the TDCOSMO+SLACSSDSS and
TDCOSMO+SLACSSDSS+IFU measurements (orange and purple) do. All the measurements shown in this plot are in statistical
agreement with each other. See Section 8.5 for a discussion and physical interpretation of the results. � source
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Way forward 1:
data on time delay lenses

• spatially resolved stellar 
kinematics                                           
(i.e. VLT MUSE, Keck KCWI)


• improving kinematics 
measurement and modeling 
(mitigating errors on the population level)


• increase sample size of time-
delay lenses                              
(discovery, monitoring, high-resolution 
imaging, spectroscopy)

4 A. J. Shajib et al.

Figure 1. Comparison between the observed (first and third columns) and reconstructed (second and fourth columns) strong-lens
systems. The three HST bands: F160W, F814W, and F475X are used in the red, green, and blue channels, respectively, to create the
red-green-blue (RGB) images. Horizontal white lines for each system are rulers showing 1 arcsec. The relative intensities of the bands
have been adjusted for each lens system for clear visulaisation of the features in the system.

2.2.8 PS J0630-1201

This system is the first-ever discovered five-image lensed
quasar system (Ostrovski et al. 2018). The discovery was
the result of a lens search from Gaia data from a selection
of lens candidates from Pan-STARRS and WISE.

2.2.9 DES J0420-4037

The discovery of this quad is reported in Ostrovski et al.
2018b. Several small knots are visible near the quasar images
that are possibly multiple images of extra components in the
source plane.

2.2.10 DES J0408-5354

This system was discovered from the DES Year 1 data (Lin
et al. 2017; Agnello et al. 2017b). This is a very complex
lens system with multiple lensed arcs visible in addition to
the quasar images. The sources of the lensed arcs can be
components in the same source plane as the lensed quasar or
they can be at di↵erent redshifts. This system has measured
time-delays (Courbin et al. 2018).

2.2.11 SDSS J1251+2935

This quad was discovered from the Sloan Digital Sky Survey
(SDSS) Quasar Lens Search (SQLS) (Kayo et al. 2007). The
source redshift is zs = 0.802 and the deflector redshift is zd =
0.410 measured from the SDSS spectra.

2.2.12 SDSS J1433+6007

This lens systems was discovered from the SDSS data re-
lease 12 photometric catalogue (Agnello et al. 2018a). The
redshifts of the source and deflector are zs = 2.737±0.003 and
zd = 0.407±0.002, respectively (Agnello et al. 2018a).

3 LENS MODELLING

To devise a uniform approach that will suit a wide range of
quads that vary in size, configuration, light profiles, etc., we
need to choose from the most general models for the lens
mass profile and the light distributions. It is often required
to fine-tune the choice of models by adding complexities to
the lens model in a case-by-case basis to suit the purpose of
the specific science driver of an investigator. However, such
detailed lens-modelling is outside of the scope of this paper.
We only require our models to satisfactorily ( �2

red ⇠ 1) fit

MNRAS 000, 1–15 (2017)

Shajib, SB+2018, STRIDES collaboration

see also Birrer & Treu 2020, arXiv:2008.06157, Yildirim et al in prep, Chen et al. in prep



Way forward 2: 
adding external data sets

• external lensing sample matching precisely TDCOSMO 
(same redshift, deflector morphology etc)


• increase sample size of galaxy-galaxy lenses                         
(Rubin Observatory, Euclid, Roman Observatory will discover 10’000+ 
lenses - which to follow up?)


• add kinematic information from                                 
local elliptical galaxies                                                       
(SAURON, ATLAS3D, …)


• Continuous effort to have the right statistical tool in 
hand for the right question to ask.

38 Jacobs et al

Figure 22. Candidate lenses found in DES using CNNs. In yellow, left: best CNN score, right: human grade.

Jacobs+2019, DES collaborationsee also Birrer & Treu 2020, arXiv:2008.06157



Way forward 3:
challenge yourself!

• Improve simulation products for better validation                 
(full line-of-sight ray-tracing)


• Blind analysis challenges                                                       
(blind data challenges for the community - as realistic as possible)


• Keep analysis blind!                                                             
(continue assessing systematics regardless of the outcome of the 
experiment - challenge our intuition and assumptions)


• Open source                                                                         
(provide the full end-to-end analysis open source)


•



public software

Full software, scripts and data released for Birrer+19, 20


https://github.com/sibirrer/lenstronomy


