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Quantum Cosmological Correlation Functions and Their Adiabatic Regularization

Motivation

What/Why of Quantum Cosmological Perturbations

Our current understanding is that a description of the very early universe
should involve a quantum theory of gravity, but for now we do not have

one that is agreed upon.

The next easy thing we can do is to take our best theory of gravity i.e.
Einstein’s gravity and perturb it around a fixed background. Then we can

quantize the perturbation fields. This will be in effect a quantum field
theory (QFT) on a curved space-time.

This method is justified by observations: Expectation values of such
quantum fields around a inflationary background can be shown to

consistently describe the current observed variations in the CMB sky and
also the large scale structure in the universe.
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Quantum Cosmological Correlation Functions and Their Adiabatic Regularization

Motivation

In the following I will describe how to calculate quantum expectation
values in such a theory. As expected from a QFT, these values will have

divergences. For regularization of these divergences I will employ
adiabatic regularization scheme,suggested by Leonard Parker.

Originally this scheme was used for regularization of QFT in curved
background, where qravity is unperturbed and purely classical. Here we

will show what happens if we use it for a theory where

perturbations of the metric is quantized,

and an expectation value at point of time is calculated by an in-in
formulation.
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Quantum Cosmological Correlation Functions and Their Adiabatic Regularization

Framework for Quantum Cosmology

Consider the Einstein Hilbert action with a (minimally coupled) scalar
field

S [g , φ] =

∫
d4x
√
−g (R(g) + LM (g , φ)) (1)

.Perturbing the fields

S [ḡ+g, φ̄+ϕ] =

∫
d4x

√
−(ḡ + g)

(
R(ḡ + g) + LM (ḡ + g, φ̄+ ϕ)

)
(2)

.Perturbing the fields

S [ḡ + g, φ̄+ ϕ] =

∫
d4x
√
−ḡ
(
L(0)(ḡ , φ̄) + L(1)(ḡ , φ̄, g, ϕ)

+ L(2)
R (ḡ , g) + L(2)

M (ḡ , g, φ̄, ϕ)

+ L(3)
R (ḡ , g) + L(3)

M (ḡ , g, φ̄, ϕ) + · · ·
)

(3)

.Perturbing the fields

S [ḡ + g, φ̄+ ϕ] =

∫
d4x
√
−ḡ
(
���

���
���

���
�: ḡ, φ̄ bckgnd solutions

L(0)(ḡ , φ̄) + L(1)(ḡ , φ̄, g, ϕ)

+ L(2)
R (ḡ , g) + L(2)

M (ḡ , g, φ̄, ϕ)

+ L(3)
R (ḡ , g) + L(3)

M (ḡ , g, φ̄, ϕ) + · · ·
)

(4)

.Perturbing the fields

Sḡ ,φ̄[g, ϕ] =

∫
d4x
√
−ḡ
(
L(2)

R (ḡ , g) + L(2)
M (ḡ , g, φ̄, ϕ)

+ L(3)
R (ḡ , g) + L(3)

M (ḡ , g, φ̄, ϕ) + · · ·
)

(5)

After this step we have a theory with the fields g, ϕ with fixed
background ḡ , φ̄. For the purposes of cosmology ḡ , φ̄ gives an FRW
universe with the necessary matter field for it.
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Quantum Cosmological Correlation Functions and Their Adiabatic Regularization

Framework for Quantum Cosmology

Now we quantize the perturbations g, ϕ. These will be the seeds of the
structure in the universe. To calculate a distribution on the sky like
CMB, one needs to calculate N-point functions of fields at a given time.
Such an expectation value, in the Schrödinger picture, Interaction picture
is written as

〈ϕϕ · · ·ϕ〉 = 〈ψS |ϕS (t, x1)ϕS (t, x2) · · ·ϕS (t, xN ) |ψS〉 (6)

〈ϕϕ · · ·ϕ〉 = 〈ψI |ϕIϕI ... |ψI 〉 (7)

〈ϕϕ · · ·ϕ〉 = 〈ψI |ϕIϕI ...ϕI |ψI 〉

= 〈ψS (t0)| T̄
(
e

i
∫ t

t0
H′I (t′)dt′

)
ϕIϕI ...T

(
e
−i

∫ t
t0

H′I (t′)dt′
)
|ψS (t0)〉

(8)

where ϕI are interaction picture fields, and H ′I is the interaction
Hamiltonian in the interaction picture. (Interaction Hamiltonian is
defined as the part of the Hamiltonian that is cubic and higher order in
fields.)
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Quantum Cosmological Correlation Functions and Their Adiabatic Regularization

Framework for Quantum Cosmology

If instead of canonical quantization one uses the path integral
formulation then

〈ϕϕ · · ·ϕ〉 =

∫
Dφ(t)

∫ t∏
t0

Dφ+Dφ−e iS[φ+]−iS[φ−]

φ(t, x1)φ(t, x2) · · ·φ(t, xN )Ψ0[φ+(t0)]Ψ∗0 [φ−(t0)] (9)

This has the picture

and hence the name in-in.
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Quantum Cosmological Correlation Functions and Their Adiabatic Regularization

Expectation Values

Having settled up this framework, let us use it to calculate a simple
expectation value at the “tree” level: two point function. For this
purpose let us consider a case in 1 + 3 spacetime dimensions with two
external fields where

ḡ = −dt2 + a2(t)dx2 , φ̄→ Slow-roll , ϕ→ ϕ, χ , (10)

and the matter Lagrangian is

L(2)
M (ḡ , φ̄, ϕ, χ) =

˙̄φ2

2
− 1

2
∇µχ∇µχ− v(φ̄)− 1

2
m2
χχ

2 − 1

2
κ2φ̄2χ2 (11)
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Quantum Cosmological Correlation Functions and Their Adiabatic Regularization

Expectation Values

Assume now then we would like to consider the two point function for χ.
The full quantum expectation value is

〈χ(t, x1)χ(t, x2)〉 = 〈ψ| T̄
(
e

i
∫ t

t0
H′I (t′)dt′

)
χI ,1χI ,2T

(
e
−i

∫ t
t0

H′I (t′)dt′
)
|ψ〉

= 〈χI ,1χI ,2〉+ i

∫ t

t0

〈[H′I (t ′) , χI ,1χI ,2]〉

+ i2
∫ t

t0

∫ t′′

t0

〈[HI (, t ′) , [HI (t ′′) , χI ,1χI ,2]]〉

+O(3) . (12)
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Quantum Cosmological Correlation Functions and Their Adiabatic Regularization

Expectation Values

First order term is then

〈χI ,1χI ,2〉 = 〈ψS (t0)|χI (t, x1)χI (t, x2) |ψS (t0)〉 . (13)

Remember χI is interaction picture operator, defined as

χI (t, x) = U f −1
χS (x , t)U f (14)

where U f is the evolution operator corresponding to the free-2nd
order-part of the Hamiltonian. Solving this will be equivalent to solving

µ̈I (t, x) +

(
m2
χ + κ2φ̄2 − 9

4
H2 − 3

2
Ḣ

)
µI (t, x)− 1

a2(t)
∂2µI (t, x) = 0

and quantizing µI where

H =
ȧ

a
, µ = a3/2χ . (15)
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Quantum Cosmological Correlation Functions and Their Adiabatic Regularization

Expectation Values

With “appropriate” initial conditions and using slow-roll approximation
one can show that solution to µI in the Fourier space is

µI (k , t) =

√
π

4H
H(1)
ν

(
k

aH

)
(16)

where H
(1)
ν is the Hankel function of the first type and

ν =

(
9

4
−

m2
χ + κ2φ̄2

H2

)1/2

. (17)

Then the tree level two point function is

〈χI ,1χI ,2〉 =

∫
d3k

(2π)3

e i~k·(~x1−~x2)

a3
|µk (t)|2 . (18)

In the UV limit by using the asymptotic behaviour of the Hankel function
one can see µk → 1√

k
and hence the integral diverges as might one

expect.
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Quantum Cosmological Correlation Functions and Their Adiabatic Regularization

Adiabatic Regularization

Let us now demonstrate the adiabatic regularization by regularizing this
integral. Main idea is to make an expansion in derivatives of a(t), i.e.

ȧ

a
∼ O(1);

(
ȧ

a

)2

,
ä

a
∼ O(2)

so on. The physical motivation is that, there should be no creation of
particles whose energies are much larger then the space-time curvature
i.e. when

k2

a2(t)
+ m2 �

(
ȧ

a

)2

,
ä

a
.
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Quantum Cosmological Correlation Functions and Their Adiabatic Regularization

Adiabatic Regularization

It will prove to easier to do this if we define

µk =
1√

2Wk

e−i
∫ t Wk (t′)dt′ (19)

Equation becomes:

−1

2

Ẅk

Wk
+

3

4

Ẇ 2
k

W 2
k

−W 2
k +

(
k2

a2
+ m2

χ + κ2φ̄2 − 9

4
H2

)
= 0

Now solve this in adiabatic orders:

W
(0)
k =

√
k2

a2
+ m2

χ + κ2φ̄2 ≡ ωk

W
(1)
k = 0

W
(2)
k =

H2

2ωk

(
−9

4
−
(

k

aωk

)2

+
5

4

(
k

aωk

)4
)
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Quantum Cosmological Correlation Functions and Their Adiabatic Regularization

Adiabatic Regularization

Let us now expand our expectation value in the adiabatic orders:

〈χI ,1χI ,2〉 =
∫

d3k

(2π)3

e i~k·(~x1−~x2)

a3

1

2Wk(t)
=

∫
�dkk2 1

ωk

(
1−

W
(2)
k

ωk
+ · · ·

)
(20)

where we have only typed the UV diverging parts. Subtle part here is

that, if an adiabatic term W
(n)
k gives a diverging contribution, we should

subtract it as a whole, not only its diverging parts. So as a result we
write down the regularized two point function as:

〈χI ,1χI ,2〉reg =

∫
d3k

(2π)3

e i~k·(~x1−~x2)

a3

(
π

4H

∣∣∣∣H(1)
ν

(
k

aH

)∣∣∣∣2 − 1

2ωk
+

W
(2)
k

ω2
k

)
(21)
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Quantum Cosmological Correlation Functions and Their Adiabatic Regularization

Getting Counterterms from Adiabatic Regularization

As another application of adiabatic regularization, in the paper (A.Kaya,
ESK; arXiv:1509.00489 [gr-qc]) we calculate one-loop effective potential
coming from the field χ , by integrating out the modes χ in the path
integral to get

Veff (φ) =
1

2a(t)3
g2 φ2

∫
d3k

(2π)3

∫ 1

0

ds |µk [t, s, φ]|2 .

where s is a parameter we have introduced by replacing κ2 → sκ2. This
effective potential goes indeed to Coleman-Weinberg potential for the
flat case. The procedure of adiabatic regularization can be used here to
calculate

Veff (φ) =
1

2a(t)3
g2 φ2

∫
d3k

(2π)3

∫ 1

0

ds

[
|µk [t, s, φ]|2 −

∣∣∣µad
k

(2)
∣∣∣2] ,
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Quantum Cosmological Correlation Functions and Their Adiabatic Regularization

Getting Counterterms from Adiabatic Regularization

where∣∣∣µad
k

(2)
∣∣∣2 =

1

2ωk

[
1 +

9

8

H2

ω2
k

+
3

4

Ḣ

ω2
k

− 5

8

H2k4

a4ω6
k

− 1

4

Ḣk2

a2ω4
k

+
1

2

H2k2

a2ω4
k

]
.

For this case the subtracted terms in the effective potential can be
thought to arise from a counterterm potential δV (φ) appearing in the
bare action. It can be found as

δV (φ) = −a1κ
4φ4 − 2a1κ

2m2
χφ

2 − κ2φ2
[
a2H

2 + a3Ḣ
]

where

a1 =
1

16π2

∫ ∞
0

k2dk

(k2 + 1)1/2
, a2 =

9

64π2

∫ ∞
0

k2 dk

(k2 + 1)3/2
+ · · ·

This interpretation justifies the adiabatic subtraction terms since the
regularization procedure can be recast as a standard renormalization
method.
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Quantum Cosmological Correlation Functions and Their Adiabatic Regularization

Getting Counterterms from Adiabatic Regularization

Thank You!
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