Probing primordial non-Gaussianity with Fast Radio Bursts

Method

Robert Lilow with Robert Reischke and Steffen Hagstotz arXiv:2007.04054

Technion - Israel Institute of Technology

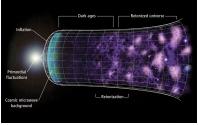
Cosmology from Home 2020

Motivation	Method	Results	Conclusion
●00	00000	000	O
Fast Radio Bu	rsts (FRBs)		

- Short radio transients, $T \sim ms$, $v \sim 10^{11-12}$ Hz
- Delay in arrival time $\sim v^{-2}$
- Dispersion measure (DM) probes electron distribution

$$\mathrm{DM} \sim \int n_e \, \mathrm{d}l$$

• Expect $\sim 10^4$ FRBs per decade up to cosmological distances


Jingchuan Yu, Beijing Planetarium

- Many models of inflation predict small PNG
- Local models parametrized by f_{NL}

$$\phi_{\rm NG} = \phi_{\rm G} + f_{\rm NL} \phi_{\rm G}^2 + O(\phi_{\rm G}^3)$$

- CMB constraint from Planck-18 is $f_{\rm NL} = 0.9 \pm 5.1$
- \Rightarrow Probe inflation by tightening the constraint using LSS

Faucher-Giguère et al., Science 31 (2008) 5859

Motivation	Method	Results	Conclusion
00●	00000	000	O
Large-scale bi	as from PNG		

- Long $\phi_{\rm NG}\text{-}{\rm modes}$ couple to small-scale $\delta\text{-}{\rm fluctuations}$
- \Rightarrow Scale-dependent bias contribution

$$b \rightarrow b + \Delta b^{\rm NG}(k, z)$$

Peak-background split approach predicts

$$\Delta b^{\rm NG}(k,z) = f_{\rm NL} (b-1) \frac{1}{k^2} \frac{3\delta_{\rm c} \Omega_{\rm m0} H_0^2}{a T_{\phi}(k,z) c^2}$$

 \Rightarrow Distinct large-scale feature in spectrum of biased tracers

Motivation	Method	Results	Conclusion
000	●0000	000	O
Dispersion m	easure sources		

• DM splits into three contributions

 $DM_{tot}(\hat{\boldsymbol{x}}, z) = DM_{MW}(\hat{\boldsymbol{x}}) + DM_{host}(z) + DM_{LSS}(\hat{\boldsymbol{x}}, z)$

- Subtract model for $DM_{MW}(\hat{x})$
- Approximate DM_{host} by mean plus Gaussian scatter

$$\langle \mathrm{DM}_{\mathrm{host}} \rangle(z) \approx \sigma_{\mathrm{DM,host}}(z) \approx 50 \ \mathrm{pc} \ \mathrm{cm}^{-3} \left(1+z\right)^{-1}$$

• LSS contribution dominates and depends on electron bias

$$DM_{LSS}(\hat{\boldsymbol{x}}, z) = \langle DM_{LSS} \rangle(z) + \mathcal{D}(\hat{\boldsymbol{x}}, z)$$
$$= \frac{3H_0 \Omega_{b0} c}{8\pi G m_p} \int_0^z dz' \frac{1+z'}{E(z')} F(z') \left[1 + b_e(\boldsymbol{x}, z') \,\delta_m(\boldsymbol{x}, z')\right]$$

Motivation	Method	Results	Conclusion
000	O●OOO	000	O
Electron bias			

- Feedback pushes electrons out of halos
- Hydrodynamical simulations suggest on large scales

$$b_{\rm e}(z) \approx \begin{cases} b_{\rm e}^0 + \left(1 - b_{\rm e}^0\right) \frac{z}{z_{\rm fb}} & \text{for } z \le z_{\rm fb} \\ 1 & \text{for } z > z_{\rm fb} \end{cases}$$

$$b_{\mathrm{e}}^{0} \approx 0.75, \ z_{\mathrm{fb}} \approx 5$$

$$\Rightarrow$$
 Large-scale bias due to PNG in $\langle DD \rangle$

Motivation	Method	Results	Conclusion
000	00●00	000	O
Tomographic	analysis		

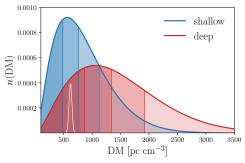
• Project DM_{LSS} fluctuations for given FRB distribution n(z)

$$\mathcal{D}(\hat{\boldsymbol{x}}) = \int \mathrm{d}\boldsymbol{z} \, \boldsymbol{n}(\boldsymbol{z}) \, \mathcal{D}(\hat{\boldsymbol{x}}, \boldsymbol{z})$$

• FRB redshifts via host identification or estimated from DM

$$n(z) \approx \int dDM \ n(DM) \ \mathcal{N}(\langle DM \rangle(z), \sigma_{DM}^2(z))$$

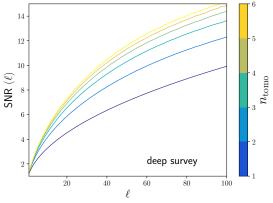
• Observe angular power spectrum in *n*tomo tomographic bins


$$\underbrace{\underbrace{C_{ij}^{\mathcal{D}\mathcal{D}}(\ell)}_{\mathcal{D} \text{ spectrum}}}_{\text{ shot noise}} + \underbrace{\underbrace{n_{\text{tomo}} \frac{\sigma_{\text{DM,host}}^2(z_i)}{\bar{n}} \delta_{ij}}_{\text{ shot noise}}$$

 \Rightarrow Limited by cosmic variance for only a few 10³ FRBs

Motivation	Method	Results	Conclusion
000	000●0	000	O
Survey chara	cteristics		

• Consider two survey models

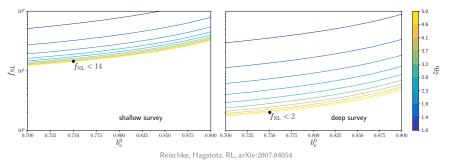

$$n(z) \propto z^2 \exp(-\alpha z)$$
 shallow: $\alpha = 3.5$, $N_{\text{FRB}} = 5 \times 10^3$
deep: $\alpha = 2$, $N_{\text{FRB}} = 5 \times 10^4$

Reischke, Hagstotz, RL, arXiv:2007.04054

Motivation	Method	Results	Conclusion
000	0000●	000	O
Signal-to-n	oise ratio (SNR)		

• SNR for different tomographic bin numbers

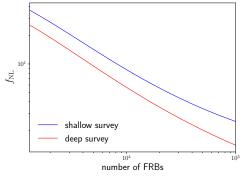
Reischke, Hagstotz, RL, arXiv:2007.04054


 \Rightarrow Saturates for $n_{\text{tomo}} \gtrsim 4$, as bins become increasingly correlated

Motivation	Method	Results	Conclusion
000	00000	●00	O
Forecast assu	mptions		

- Gaussian likelihood of observed $\{\mathcal{D}_{lm,i}\}$
- Fixed fiducial ACDM Planck-18 cosmology without PNG
- Constrain deviation from $f_{\rm NL} = 0$ by Fisher analysis
- Flat prior on f_{NL}
- Observed sky fraction $f_{sky} = 0.9$
- Maximal multipole $l_{\text{max}} = 100$

Motivation	Method	Results	Conclusion
000	00000	○●○	0
Constraints on $f_{\rm NI}$			


Constraints for different feedback models

- \Rightarrow Deep survey constraints tighter by up to an order of magnitude
- \Rightarrow Constraints weaker for higher $b_{\rm e}^0$ or lower $z_{\rm fb}$

Motivation	Method	Results	Conclusion
000	00000	00●	O
Constraints on f_N	T.		

• Constraints for different FRB numbers

Reischke, Hagstotz, RL, arXiv:2007.04054

- \Rightarrow Current LSS constraints surpassed for $\sim 10^3$ FRBs
- $\Rightarrow~$ CMB constraints surpassed for $\sim 10^4$ FRBs in deep survey

Motivation	Method	Results	Conclusion
000	00000	000	•
Conclusion			

Summary

- Large-scale PNG feature in DM spectrum due to electron bias
- Tomographic analysis possible even without host identification
- Large volume, low shot noise, small foreground contamination

 $\Rightarrow f_{\rm NL} \sim O(1)$ reachable with only a few $10^4 \ {\rm FRBs}$

• Largest uncertainty is feedback strength

Outlook

- · Measure bias directly by cross-correlation with weak lensing
- \Rightarrow FRBs are promising tool to test inflation with complementary systematics to galaxy clustering