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Inflation

Exponential growth in the early universe solves cosmology’s initial
conditions problems

a∗ ∼ 10−60 aend ∼ 10−30 aBBN ∼ 10−15 a0 = 1

inflation reheating
everything

else

?

I explains homogeneity, flatness

I predicts a spectrum of perturbations in the cosmic microwave
background

How does inflation transition into big bang nucleosynthesis?
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Reheating

I At the end of inflation the universe is full of an almost
homogeneous condensate

I Need to transition to big bang nucleosynthesis
I The way and speed with which reheating happens affects the

predictions of a model
I General viability
I Required amount of inflation
I Coupling to dark matter

I Scenarios:
I Self-interactions or couplings to other fields → resonance and

preheating
I Weak coupling → slow reheating

3/17



Reheating

What happens when couplings are weak?

I The universe can expand for a long time without significant
reheating

I Perturbations in the inflaton field grow gravitationally

δ =
ρ

〈ρ〉
∼ a

I The scales with the most growth are those on the horizon at
the end of inflation

K. Jedamzik, M. Lemoine and J. Martin, arXiv:1002.3039
R. Easther, R. Flauger and J. B. Gilmore, arXiv:1003.3011
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Scenario

V (φ) =
1

2
m2φ2 +O(φ3)

V(
)
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Scenario

The inflaton has coherent oscillations

φ ∼ 1

t
sin(mt)

The density grows with the scale factor

δ ∼ a

These are on different timescales:

tH
tφ

=
√

3

(
a

aend

)3/2
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The Klein-Gordon Equations

φ obeys the Klein-Gordon and Einstein equations

∇µ∇µφ−
dV

dφ
= 0

Gµν = 8πTµν = 8π

(
∂µφ∂νφ−

1

4
gµν (∂κ∂

κφ− V (φ))

)
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The Schrödinger-Poisson Equations

After making a transformation

φ =
1

ma3/2
(
ψe−imt + ψ∗eimt

)
,

the Klein-Gordon equations become the Schrödinger-Poisson
equations

i
∂ψ

∂t
= − 1

2ma2
∇2ψ +mψΦ

1

a2
∇2Φ =

4πG

a3
(
ψψ∗ −

〈
|ψ|2

〉)
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The Schrödinger-Poisson Equations

I The largest scales must be sub-horizon

I The field should have small derivatives

|ψ̈| � m|ψ̇| � m2|ψ|∣∣∣∣ 1

a2
∇2ψ

∣∣∣∣� m|ψ|

I Expansion should not be too fast

H � m

Ḣ � mH
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PyUltraDark

I Based on PyUltraLight, an ultralight dark matter code
I Added

I expansion with a ∝ t2/3
I adaptive time steps
I cosmological initial conditions
I consistency checks on phase

I Can’t handle:
I large velocities
I formation of black holes, etc.
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PyUltraDark
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Results
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Results
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Conclusion

I Showed that the post-inflation dynamics of the inflaton are
described by the Schrödinger-Poisson equations

I Can simulate the gravitational growth of perturbations in the
inflaton field during reheating

I Confirmed structure formation and showed that it is analogous
to the late universe

I More advanced codes will go further and make observational
predictions
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