Nonlinear evolution during the primordial dark age Cosmology from Home

Nathan Musoke Shaun Hotchkiss Richard Easther

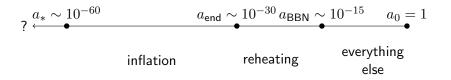
University of Auckland

2020 08 17

Outline

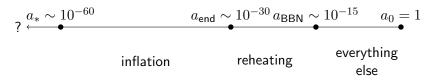
Inflation

Reheating


PyUltraDark

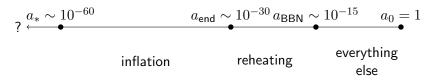
Results

Conclusion


Inflation

Exponential growth in the early universe solves cosmology's initial conditions problems

Inflation


Exponential growth in the early universe solves cosmology's initial conditions problems

- explains homogeneity, flatness
- predicts a spectrum of perturbations in the cosmic microwave background

Inflation

Exponential growth in the early universe solves cosmology's initial conditions problems

- explains homogeneity, flatness
- predicts a spectrum of perturbations in the cosmic microwave background

How does inflation transition into big bang nucleosynthesis?

Reheating

- At the end of inflation the universe is full of an almost homogeneous condensate
- Need to transition to big bang nucleosynthesis
- The way and speed with which reheating happens affects the predictions of a model
 - General viability
 - Required amount of inflation
 - Coupling to dark matter
- Scenarios:
 - \blacktriangleright Self-interactions or couplings to other fields \rightarrow resonance and preheating
 - Weak coupling \rightarrow slow reheating

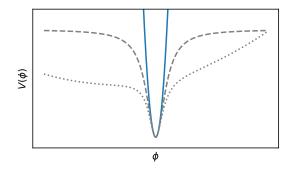
Reheating

What happens when couplings are weak?

- The universe can expand for a long time without significant reheating
- Perturbations in the inflaton field grow gravitationally

$$\delta = \frac{\rho}{\langle \rho \rangle} \sim a$$

The scales with the most growth are those on the horizon at the end of inflation


K. Jedamzik, M. Lemoine and J. Martin, arXiv:1002.3039 R. Easther, R. Flauger and J. B. Gilmore, arXiv:1003.3011

NM, S. Hotchkiss and R. Easther, arXiv:1909.11678

Scenario

$$V(\phi) = \frac{1}{2}m^2\phi^2 + \mathcal{O}(\phi^3)$$

Scenario

The inflaton has coherent oscillations

$$\phi \sim \frac{1}{t}\sin(mt)$$

The density grows with the scale factor

 $\delta \sim a$

These are on different timescales:

$$\frac{t_H}{t_\phi} = \sqrt{3} \bigg(\frac{a}{a_{\rm end}} \bigg)^{3/2}$$

The Klein-Gordon Equations

ϕ obeys the Klein-Gordon and Einstein equations

$$\nabla_{\mu}\nabla^{\mu}\phi - \frac{\mathrm{d}V}{\mathrm{d}\phi} = 0$$
$$G_{\mu\nu} = 8\pi T_{\mu\nu} = 8\pi \left(\partial_{\mu}\phi\partial_{\nu}\phi - \frac{1}{4}g_{\mu\nu}\left(\partial_{\kappa}\partial^{\kappa}\phi - V(\phi)\right)\right)$$

The Schrödinger-Poisson Equations

After making a transformation

$$\phi = \frac{1}{ma^{3/2}} \left(\psi e^{-imt} + \psi^* e^{imt} \right) \,,$$

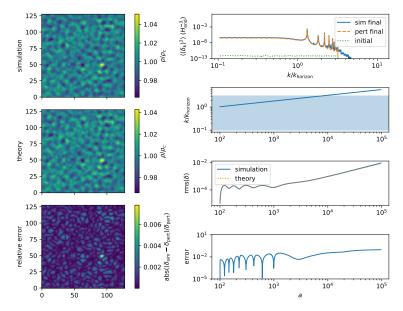
the Klein-Gordon equations become the Schrödinger-Poisson equations

$$\begin{split} i\frac{\partial\psi}{\partial t} &= -\frac{1}{2ma^2}\nabla^2\psi + m\psi\Phi\\ \frac{1}{a^2}\nabla^2\Phi &= \frac{4\pi G}{a^3}\left(\psi\psi^* - \left\langle|\psi|^2\right\rangle\right) \end{split}$$

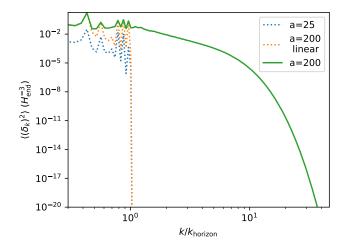
The Schrödinger-Poisson Equations

- The largest scales must be sub-horizon
- The field should have small derivatives

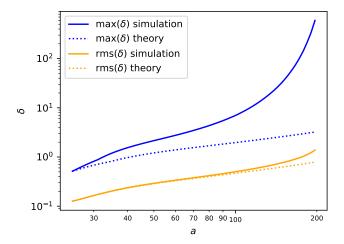
$$\begin{split} \ddot{\psi}| \ll m |\dot{\psi}| \ll m^2 |\psi| \\ \left| \frac{1}{a^2} \nabla^2 \psi \right| \ll m |\psi| \end{split}$$

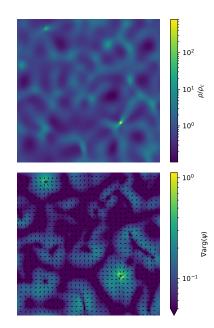

Expansion should not be too fast

 $\begin{array}{l} H \ll m \\ \dot{H} \ll m H \end{array}$


PyUltraDark

- Based on PyUltraLight, an ultralight dark matter code
- Added
 - expansion with $a \propto t^{2/3}$
 - adaptive time steps
 - cosmological initial conditions
 - consistency checks on phase
- Can't handle:
 - large velocities
 - formation of black holes, etc.


PyUltraDark


Results

Results

Results

15/17

Conclusion

- Showed that the post-inflation dynamics of the inflaton are described by the Schrödinger-Poisson equations
- Can simulate the gravitational growth of perturbations in the inflaton field during reheating
- Confirmed structure formation and showed that it is analogous to the late universe
- More advanced codes will go further and make observational predictions

References I

 N. Musoke, S. Hotchkiss and R. Easther, Lighting the Dark: Evolution of the Postinflationary Universe, Phys. Rev. Lett. 124 (2020) 061301, [1909.11678].