The Measurement of the Mass Accretion Rate of Galaxy Clusters

Michele Pizzardo

University of Turin

Based on arXiv:2005.11562

with S. Di Gioia, A. Diaferio, C. De Boni, A. L. Serra, M. J. Geller, J. Sohn, K. Rines, M. Baldi

Cosmology from Home 2020

UNIVERSITÀ DEGLI STUDI DI TORINO

Outline of the talk

Motivations

Interpretation of the MAR from data

- <u>The procedure</u> Data, caustic technique, spherical accretion model
- <u>The validation of the recipe</u> N-body simulations and mock catalogues
- The MAR in the observable Universe Analysis, robustness and results

Conclusions

The measuremer

Real Universe

Modified gravit

Conclusions

Large and small scales

An estimate of the MAR of real galaxy clusters can provide new tests in a variety of fields:

- it is linked with internal properties of the clusters (concentration, shape, spin, degree of internal relaxation, splashback radius, age);
- it can trace the accretion rate of baryons from the cosmic web onto the dark matter halo;
- it can be a probe of cosmological parameters;
- it could discriminate among different models of gravity.

Contents 0	Motivations ○○●	The measurement	Real Universe	Modified gravity 0	Conclusions o
Previo	us attem	pts			

- *Lemze & al.* (2013) investigate the region slightly beyond
 *R*₂₀₀ in X-ray and the optical bands;
- *Tchernin & al.* (2016) detect infalling gas clumps of A2142 in X-ray and SZ out to ~ 1.3R₂₀₀;
- Haines & al. (2018) identify the infalling groups in the range (0.28; 1.35)R₂₀₀.

From simulations: splashback radius at ~ $2R_{200}$ (*More & al., 2015*) So... What's the right infalling region? Where's the cluster actually accreting new matter?

☆ Lack of a recipe to perform measurements! At present, no "unambiguous" measurement of the MAR in real Universe.

The ingredients of the measurement

• Dynamical model for the accretion is needed → spherical accretion model (*De Boni et al., 2016*)

• Variables: M(r), R_i , t_{inf} , $v_i \rightarrow \delta_s$

We need a good method for estimating the mass profile of clusters at large radii (up to ~ 3*R*₂₀₀)
 → caustic technique (*Diaferio & Geller*, 1997)

Ontents O	Motivations 000	The measurement ○●○○	Real Universe 00	Modified gra	vity Conclusions o	
Pipelin	ie (I)					
1) Data Retrieval				\rightarrow 2) Caustic Technique		
		Abell 1314		2000		
		$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Z 8 ··· 0.47415 19.3198 (2) 0.05509 16.9693 (3) 0.05905 17.4208 (4) 0.05605 16.5336 (2) 0.05655 16.5336 -	1000 0 1000 2000		
		$-2\phi = \langle v_{esc}^2 \rangle, \mathscr{A}^2$	$=\left\langle v_{esc,los}^{2}\right\rangle$		$ \begin{array}{l} \frac{\sigma_{\rm eff}(r,v) < S_{\rm eff}(r,v) < S_{\rm eff}(r,v)}{\frac{1}{4} + \frac{1}{6} - \frac{1}{2} - \frac{\sigma_{\rm eff}(r,v)}{2} - \frac{\sigma_{\rm eff}(r,v)}{2} \\ f_{2D}(r,v) \\ S(\kappa) = 0 \end{array} $	
		$-2\phi = \mathscr{A} - g(p), G$	$M(< r) = \mathscr{F}_{\beta} J_0 \mathscr{A}$		$f_{2D}(r,v) = \kappa$	
	200 17.5 15.0 (⁵)W ₁ -U ₁ 00 10.0 1	$\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{4}$ $\frac{1}{5}$ $\frac{1}{6}$	7 8 000			

7/13

Contents	Motivations	The measurement	Real Universe	Modified gravity	Conclusions
o	000	○○●○		0	0
Pipeli	ne (II)				

· 10

0.0

 10^{5}

 $.0^{4}$

 10^{3}

MAR $[h^{-1}M_{\odot} \text{ yr}^{-1}]$

Results for real clusters (I)

 $5.2 \cdot 10^{14}$

 $2.2 \cdot 10^{14}$

0.1

0

The measurement

 $10^{15} h^{-1} M_{\odot}$

 $10^{14} h^{-1} M_{\odot}$

0.5

nedian from 3D nedian from caustic

0.4

0

0.3

nedian from individuals

variations of velocity

Real Universe

Modified gravity

Conclusions 0

- 129 clusters from CIRS and HeCS (*Rines & Diaferio*, 2006; *Rines et al.*, 2013);
- No photometric nor spectroscopic bias induced by different selections;
- \lesssim 25% uncertainties in single MARs;
- Weak dependence on *v_i*.

Robustness ensured by 3 different procedures of stacking:

0.2

- all cluster galaxies (figure);
- equally-weighted clusters;
- only individual members.

11 / 13

Contents 0	Motivations 000	The measurement	Real Universe 00	Modified gravity	Conclusions 0

MAR in Modified Gravity?

- How much does the MAR change in MG?
- Has the MAR got the power to effectively exclude alternative theories?
- Theoretically: f(R) simulations with different scalarons.
- Observationally: deeper and denser surveys.

Conclusions and future perspectives

- We developed a pipeline to perform the estimation of the MAR of real clusters based on the caustic technique.
- The recipe allows the estimation of the MAR at unprecedented large distances from the center of the clusters ($\gtrsim 2R_{200}$).
- We validated the recipe with N-body simulations: caustic and 3D MARs agree within \lesssim 17%.
- We estimated the MAR of the CIRS and HeCS clusters. These data agree with ΛCDM (MAR, mass and *z* are correlated as expected).
- We are investigating whether the MAR can provide new tests in a large range of phenomena, thanks to its intermediate-scale nature.