Simulations of mixed dark matter

Mateja Gosenca

University of Auckland

Based on: arXiv:2007.08256v1, arXiv:1901.08528

Collaborators: Bodo Schwabe, Christoph Behrens, Jens Niemeyer, Richard Easther, Julian Adamek, Christian Byrnes, Shaun Hotchkiss

The search for the dark matter particle

The search for the dark matter particle

... so far only gave constraints:

In this talk I will present two ideas:

- Primordial Black Holes + Cold Dark Matter (WIMPs)
- Fuzzy Dark Matter + Cold Dark Matter

Motivations for mixed dark matter models:

- the "bright" sector has many different particles why expect that the "dark" sector would only have one?
- axions likely created at many different masses simultaneously: FDM composed of a continuous mass spectrum of particles
- single-mass particle scenarios strongly constrained

Primordial black holes

- form in the early Universe by gravitational collapse if $\delta \sim 1$
- strong constraints exist on the fraction of dark matter in PBHs
- if PBHs are only a fraction of DM, the rest has to be something else, e.g. WIMPs
- WIMPs form halos around PBHs
- WIMPs annihilate and

produce gamma rays

 non-detection of gamma ray background translates

to constraints on PBH

WIMP halos arounds primordial black holes

- consider a hybrid model: PBHs with ~ solar mass constitute small proportion of dark matter, the rest is WIMPs.
- simulations show steep power-law density profiles in the centre

Adamek, Byrnes, MG, Hotchkiss, PRD, 2019

f_{PBH}

 10^{-9}

 2×10^{-9}

 4×10^{-9}

Fuzzy dark matter

- cold scalar field: $i\hbar \frac{\partial \psi}{\partial t} = -\frac{\hbar^2}{2ma^2} \nabla^2 \psi + m\Phi \psi$ Schrödinger-Poisson • coupled to gravity: $\nabla^2 \Phi = \frac{4\pi G}{\sigma} (\rho - \bar{\rho}) \qquad \rho = m\psi\psi^*$
- axion particles are predicted in string theory
- ultralight axion: $10^{-22} \text{eV} \lesssim m_a \lesssim 10^{-18} \text{eV}$ may help alleviate small-scale problems in astronomy

• de Broglie wavelength:
$$\lambda_{dB} = \frac{h}{m_a v}$$

Simulations of fuzzy dark matter

Schive, Chiueh, Broadhurst, Nature Physics, 2014 $\lambda_{\rm dB} = \frac{h}{m_a v}$ core 10⁸ 10⁸ 10^{7} 10^{7} 10^{6} ${all}^{10^5}$ 10³ 10² 10¹ BECDM 10⁰ 10⁻¹ 10¹ 10^{2} r (kpc) interference 0.5 Mpc

8

- on large scales, FDM behaves like CDM
- solitonic cores in halos centres
- interference patterns around solitons and in filaments
- FDM predicts less structure on small scales (fewer subhalos)

Constraints on the Fuzzy Dark Matter mass

Linear cosmology (CMB, reionization)

sub-halo mass function

Lyman- α forest

non-detection of black hole super-radiance

AxioNyx : simulations of FDM + CDM with AMR

- solves the Schrödinger-Poisson system in a cosmological background
- uses adaptive mesh refinement in regions of interest
- mixed dark matter with various fractions of cold and fuzzy dark matter
- can easily parallelise to high number of processes
- publicly available

Schwabe, MG, Behrens, Niemeyer, Easther, arXiv:2007.08256v1, 2020

Spherical collapse - linear

Spherical collapse - non-linear

velocity distribution density profiles 10⁰ f = 0.01FDM 10-3 CDM 10^{-6} f = 0.0110⁰ f = 0.10 10^{-3} 10^{-6} f = 0.10normalized distribution 10⁰ f = 0.30 density [M_{\odot}/pc^3] 10-3 10^{-6} f = 0.3010⁰ f = 0.50 10-3 10^{-6} f = 0.5010⁰ f = 0.75 10^{-3} 10^{-6} f = 0.7510⁰ = 1.00 10-3 10^{-6} f = 1.00020 10^{-1} 10⁰ 10¹ 60 40 10² 80 0 velocity [km/s] radius [kpc]

12

 2π

 $v_c =$

 \hbar

 $7.5 mr_c$

Spherical collapse - non-linear

$$A(t) = A_1 \cdot (t - t_0) / \tau_{\rm gr} + A_0 f^{1/2}$$

$$\tau_{\rm gr} = \frac{0.7\sqrt{2}}{12\pi^3} \frac{m^3 v_c^6}{G^2 \rho_c^2 \Lambda}$$

Levkov et al., 2018

Summary

- the search for dark matter has so far only given us constraints
- mixed dark matter models should be considered
- PBH + WIMP simulations show:
 - if most of dark matter is WIMPs, then PBH with ~ solar mass can not exist
- FDM + CDM simulations show:
 - on large scales we confirm the Schrödinger-Vlasov correspondence
 - on smaller scales, around de Broglie wavelength, fuzzy effect are present if FDM constitutes at least ~10% of total dark matter
- baryonic effects must also be taken into account