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Main pointsMain points
● CMB lensing now plays a role in nearly all aspects 

of CMB observations
● Techniques to analyze lensing are at a (necessary) 

watershed moment, requiring more sophistication
● I want to teach you how these work so you can do 

it yourself or you can understand the CMB data 
products that you may be interacting with in the 
future
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Sheared (lensed) E mode
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Lensing B modes

Primordial B modes

Wu et al. 2019Choi et al. 2019
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CMB 2D power-spectrumIsotropic Gaussian random fields:

CMB “fields”

Lensed fields:

QE is suboptimal 
because it misses 
this information

Quadratic estimate (QE):

The data

Noise biases and normalization
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● These are forecasts or highly simplified analyses
● Almost 20 years later, we are finally asking: 

How do we do this to real data?

Quadratic estimate noise spectrum

Forecast for iterating
More precisely, “marginal MAP”
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True Fisher forecast
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● DeepCMB (Caldeira et al. 2018)

– Achieves noise levels comparable to the iterative-forecast 

– Challenges in extracting cosmological parameters

● Gradient inversion (Horowitz et al. 2018, Hadzhiyska et al. 2018)

– Simple, but only optimal in the asymptotic limit of small scales

● Optimal filtering (Mirmelstein et al. 2019)

– A way to more optimally filter a QE ϕ map before taking its power spectrum

– May be useful mainly in the short term

● Bayesian methods

– Guaranteed to be optimal, but computationally hard

Towards optimality…Towards optimality…
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“Joint” posterior (MM,Anderes,Wandelt 2018, 2020):

Notation:

“Marginal” posterior (Hirata&Seljak 2003; Carron&Lewis 2018):

Data model: Priors:

Bayesian LensingBayesian Lensing Cosmological parameters
or theory spectra
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marginal MAP

joint MAP

(1st step of this is ~QE)

● MAP estimate can’t easily be 
normalized to theory like the QE

● Even if done via MC, is cosmology-
dependent, no QE tricks available

● Not the right path for power-spectrum 
or parameter estimation
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“Joint” posterior (MM,Anderes,Wandelt 2018, 2020):

Instead of maximizing, marginalize:

This is guaranteed to be 
“optimal,” ie represent all the 
information that we can extract.

This ~million dimensional marginalization 
done with Hamiltonian Monte Carlo.
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Traditional lensing:

LenseFlow:

See also: 
neural ODE 
in machine 
learning



Upcoming South Pole Telescope AnalysisUpcoming South Pole Telescope Analysis

Deepest 100deg2 polarization 
measurements to-date at the angular 
scales most relevant for lensing.

With Cail Daley, Jody Ti-Lin Chou, SPT collaboration
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Data model for this analysisData model for this analysis

Unlensed CMB
Lensing

TP leakage templates 
and coefficients

Noise

Beam & TF

Global pol. rotation

Pol. calibration

Pixel mask

Fourier mask
Pol. flattening
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(every pixel in Q,U,ϕ maps)

Trace of various quantities 
throughout the samples:
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● Systematics are now a simple 
and self-consistent part of the 
analysis instead of a 
secondary ad-hoc thing

● As a bonus, we’ve reduced the 
impact of Pcal from ½σ to 
effectively zero.

Previous SPT analysis
(Wu et al. 2019)

SystematicsSystematics Preliminary
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Comparison to QEComparison to QE

Bayesian:   0.9459(75) ± 0.1123(50)
QE:         1.01       ± 0.134

● 23% tighter error bars, in line with 
expectations from forecasts

● First time cosmological parameter 
extracted from optimal lensing 
reconstruction

Preliminary
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Bayesian lensing paves the way for 
solving future problems in CMB 

analysis



For point sources in the 1-halo regime:For point sources in the 1-halo regime:

work with Emmanuel Schaan

Foreground contaminationForeground contamination
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Generative neural network

Prior distribution

Machine learning modelsMachine learning models Aylor et al. 2019

work with Ben Thorne, Lloyd Knox
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Joint bandpower estimationJoint bandpower estimation

We have developed approximations to this integral. 
Using our ability to get the exact answer via sampling, we 
can validate these approximations given realistic data. 

MM, Seljak, in prep
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● Through the 2020s, all lensing analyses will eventually go 
beyond the QE

● The Bayesian solution is a promising way forward
● For exploring the Bayesian posterior, check out CMBLensing.jl

ConclusionsConclusions

cosmicmar.com/CMBLensing.jl
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