-

Main points

- CMB lensing now plays a role in nearly all aspects of CMB observations
- Techniques to analyze lensing are at a (necessary) watershed moment, requiring more sophistication
- I want to teach you how these work so you can do it yourself or you can understand the CMB data products that you may be interacting with in the future

Sheared (lensed) E mode

T, E, and B
Choi et al. 2019
Angular scale 0.05°

Lensing B modes

Primordial B modes

Wu et al. 2019

Isotropic Gaussian random fields:

$$
\langle f(\vec{\ell}) f(\vec{\ell}+\vec{L})\rangle=\mathbb{C}_{f}(\ell) \delta(\vec{L})
$$

$$
\begin{aligned}
& f \equiv(T, E, B) \\
& \mathrm{CMB} \text { "fields" }
\end{aligned}
$$

Lensed fields:

$$
\langle\tilde{f}(\vec{\ell}) \tilde{f}(\vec{\ell}+\vec{L})\rangle \sim \phi(\vec{L})+\phi^{2}+\ldots
$$

Quadratic estimate (QE):

$$
-3000
$$

$$
\begin{aligned}
& \hat{\phi}_{\mathrm{QE}}(\vec{L}) \sim \sum_{\vec{\ell}} d(\vec{\ell}) d(\vec{\ell}+\vec{L}) \\
&\left\langle C_{\ell}^{\hat{\phi}_{\mathrm{QE}}}\right\rangle=A_{\ell} C_{\ell}^{\phi}+N_{\ell}^{0}+N_{\ell}^{1}+N_{\ell}^{3 / 2}+\ldots \\
& \text { Noise biases and normalization }
\end{aligned}
$$

Quadratic estimate noise spectrum

Forecast for iterating

Hirata \& Seljak (2003) More precisely, "marginal MAP"

True Fisher forecast

- These are forecasts or highly simplified analyses
- Almost 20 years later, we are finally asking: How do we do this to real data?

Towards optimality...

- DeepCMB (Caldeira et al. 2018)
- Achieves noise levels comparable to the iterative-forecast
- Challenges in extracting cosmological parameters
- Gradient inversion (Horowitz et al. 2018, Hadzhiyska et al. 2018)
- Simple, but only optimal in the asymptotic limit of small scales
- Optimal filtering (Mirmelstein et al. 2019)
- A way to more optimally filter a QE ϕ map before taking its power spectrum
- May be useful mainly in the short term
- Bayesian methods
- Guaranteed to be optimal, but computationally hard

Bayesian Lensing

Data model:

$d=\mathbb{L}(\phi) f+n$

Priors:

$f \sim \operatorname{Gaussian}\left(0, \mathbb{C}_{f}(\theta)\right) \quad n \sim \operatorname{Gaussian}\left(0, \mathbb{C}_{n}\right)$
$\phi \sim \operatorname{Gaussian}\left(0, \mathbb{C}_{\phi}(\theta)\right) \quad \theta \sim$ Uniform
"Joint" posterior (MM,Anderes,Wandelt 2018, 2020):

$$
\mathcal{P}(f, \phi, \theta \mid d)=\frac{\exp \left\{-\frac{(d-\mathbb{L}(\phi) f)^{2}}{2 \mathbb{C}_{n}}\right\}}{\operatorname{det} \mathbb{C}_{n}^{1 / 2}} \frac{\exp \left\{-\frac{f^{2}}{2 \mathbb{C}_{f}(\theta)}\right\}}{\operatorname{det} \mathbb{C}_{f}(\theta)^{1 / 2}} \frac{\exp \left\{-\frac{\phi^{2}}{2 \mathbb{C}_{\phi}(\theta)}\right\}}{\operatorname{det} \mathbb{C}_{\phi}(\theta)^{1 / 2}}
$$

"Marginal" posterior (Hirata\&Seljak 2003; Carron\&Lewis 2018):

$$
\mathcal{P}(\phi, \theta \mid d)=\frac{\exp \left\{-\frac{d^{2}}{2 \mathbb{C}_{d}(\phi, \theta)}\right\}}{\operatorname{det} \mathbb{C}_{d}(\phi, \theta)^{1 / 2}} \frac{\exp \left\{-\frac{\phi^{2}}{2 \mathbb{C}_{\phi}(\theta)}\right\}}{\operatorname{det} \mathbb{C}_{\phi}(\theta)^{1 / 2}}
$$

where $\mathbb{C}_{d}(\phi, \theta) \equiv \mathbb{L}(\phi) \mathbb{C}_{f}(\theta) \mathbb{L}(\phi)^{\dagger}+\mathbb{C}_{n}$

$$
\begin{aligned}
\hat{\phi}_{\mathrm{M}} & \equiv \underset{\phi}{\operatorname{argmax}} \mathcal{P}\left(\phi, \theta_{\mathrm{fid}} \mid d\right) \quad \underset{\left(1^{\text {st }} \text { step of this is } \sim \mathrm{QE}\right)}{\operatorname{marginal}} \mathrm{MAP} \\
\hat{f}_{\mathrm{J}}, \hat{\phi}_{\mathrm{J}} & \equiv \underset{f, \phi}{\operatorname{argmax}} \mathcal{P}\left(f, \phi, \theta_{\text {fid }} \mid d\right) \quad \text { joint MAP }
\end{aligned}
$$

- MAP estimate can't easily be normalized to theory like the QE
- Even if done via MC, is cosmologydependent, no QE tricks available
- Not the right path for power-spectrum or parameter estimation
"Joint" posterior (MM,Anderes,Wandelt 2018, 2020):
$\mathcal{P}(\tilde{f}, \phi, \theta \mid d)=\frac{\exp \left\{-\frac{(d-\tilde{f})^{2}}{2 \mathbb{C}_{n}}\right\}}{\operatorname{det} \mathbb{C}_{n}^{1 / 2}} \frac{\exp \left\{\frac{\left(\mathbb{L}\left(\frac{\left.(\phi)^{-1} \tilde{f}\right)^{2}}{2 \mathbb{C}_{f}(\theta)}\right\}\right.}{\operatorname{det} \mathbb{C}_{f}(\theta)^{1 / 2}} \frac{\exp \left\{-\frac{\phi^{2}}{2 \mathbb{C}_{\phi}(\theta)}\right\}}{\operatorname{det} \mathbb{C}_{\phi}(\theta)^{1 / 2}} \frac{1}{\operatorname{det} \mathbb{L}(\phi)}, \frac{1}{2}\right)}{}$

Instead of maximizing, marginalize:
$\mathcal{P}(\theta \mid d)=\int \mathrm{d} f \mathrm{~d} \phi \mathcal{P}(f, \phi, \theta \mid d)$
This is guaranteed to be "optimal," ie represent all the information that we can extract.

This ~million dimensional marginalization done with Hamiltonian Monte Carlo.

Traditional lensing:

$$
\tilde{f}(x)=f(x+\nabla \phi) \approx f(x)+\nabla f(x) \nabla \phi(x)+\ldots
$$

LenseFlow:

$$
f_{t}(x)=f(x+t \nabla \phi) \quad \frac{d f_{t}(x)}{d t}=\underbrace{\nabla \phi(x) \cdot[\mathbb{1}+t \nabla \nabla \phi(x)]^{-1} \cdot \nabla}_{\nabla_{t}} f_{t}(x)
$$

See also: neural ODE in machine learning

$$
f_{t=1}=\left[\mathbb{1}+\Delta t \mathbb{V}_{t_{n}}\right] \ldots\left[\mathbb{1}+\Delta t \mathbb{V}_{t_{1}}\right] f_{t=0}
$$

Upcoming South Pole Telescope Analysis

With Cail Daley, Jody Ti-Lin Chou, SPT collaboration

Deepest 100 deg 2 polarization measurements to-date at the angular scales most relevant for lensing.

Data model for this analysis

Trace of various quantities throughout the samples:

Systematics

TABLE 3
Systematic Uncertainties

Type	ΔA_{MV}	ΔA_{POL}	ΔA_{T}
$\Delta A_{\text {beam }}$	0.008	0.010	0.005
$\Delta A_{\text {cal }}$	0.023	0.039	0.008
$\Delta A_{\mathrm{T} \rightarrow \mathrm{P}}$	<0.001	<0.001	$\mathrm{~N} / \mathrm{A}$
$\Delta A_{\text {pol.rot. }}$	<0.001	<0.001	$\mathrm{~N} / \mathrm{A}$
$\Delta A_{\text {fg }}$	0.004	$\mathrm{~N} / \mathrm{A}$	0.008
$\Delta A_{\text {tot }}$	0.025	0.040	0.012

Previous SPT analysis (Wu et al. 2019)

- Systematics are now a simple and self-consistent part of the analysis instead of a secondary ad-hoc thing
- As a bonus, we've reduced the impact of Pcal from $1 / 2 \sigma$ to effectively zero.

Comparison to QE

$$
\begin{array}{lll}
\text { Bayesian: } & 0.9459(75) & \pm 0.1123(50) \\
\text { QE: } & 1.01 & \pm 0.134
\end{array}
$$

- 23% tighter error bars, in line with expectations from forecasts
- First time cosmological parameter extracted from optimal lensing reconstruction

Bayesian lensing paves the way for solving future problems in CMB analysis

Foreground contamination

For point sources in the 1-halo regime:
$\mathcal{P}\left(S_{\text {pix }}\right)=\int_{-\infty}^{\infty} d t \exp \left\{i t S_{\text {pix }}+\int_{0}^{S_{\text {cut }}} d S \frac{d \bar{N}}{d S d \Omega_{\text {pix }}}[\exp (i t S)-1]\right\}$

Planck

SPTpol

Machine learning models

Aylor et al. 2019

Generative neural network
$\operatorname{Gaussian}\left(0, \mathbb{I}_{64}\right)$
Prior distribution

Joint bandpower estimation мм, Seljak, in prep

$$
\mathcal{P}\left(C_{\ell}^{\phi \phi}, C_{\ell}^{E E}, \mid d\right)=\int \mathrm{d} f \mathrm{~d} \phi \mathcal{P}\left(f, \phi, C_{\ell}^{\phi \phi}, C_{\ell}^{E E} \mid d\right)
$$

We have developed approximations to this integral. Using our ability to get the exact answer via sampling, we can validate these approximations given realistic data.

Conclusions

- Through the 2020s, all lensing analyses will eventually go beyond the QE
- The Bayesian solution is a promising way forward
- For exploring the Bayesian posterior, check out CMBLensing.jl
cosmicmar.com/CMBLensing.jl
CMBLensing.jl

	CMBLensing.j
CMBLensing.j	
- Documentation	
- Instalation	CMBLensing.jl is a next-generation tool for analysis of the lensed Cosmic Microwave Background. It is written in Julia and transparently callable from Python.
Lensing a flat-sky map	
The Lensing Posterior	At its heart, CMBLensing.jl maximizes or samples the Bayesian posterior for the CMB lensing problem. It also contains tools to quickly manipulate and process CMB maps, set up modified posteriors, and take gradients using
MAP estimation	automatic differentation.
Calling from Python	Highlights
Field Basics API	- Fully Nvidia GPU compatible (speedups over CPU are currently $3 x-10 x$, depending on the problem size and hardware).

