Hyperinflation: Stuck in the Swampland

Marios Bounakis.

Cosmology from Home 2020

August 14, 2020

三.)

Overview of the talk.

Overview of the talk.

Single-field Slow-roll Inflation and Beyond

Overview of the talk.

Single-field Slow-roll Inflation and Beyond

Motivation for Hyperinflation

Overview of the talk.

Single-field Slow-roll Inflation and Beyond

- Motivation for Hyperinflation
- Hyperinflation-Background

Overview of the talk.

Single-field Slow-roll Inflation and Beyond

(ロ)、(型)、(E)、(E)、 E) の(()

- Motivation for Hyperinflation
- Hyperinflation-Background
- Hyperinflation-Perturbations

Overview of the talk.

Single-field Slow-roll Inflation and Beyond

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Motivation for Hyperinflation
- Hyperinflation-Background
- Hyperinflation-Perturbations
- Observational Constraints

Overview of the talk.

Single-field Slow-roll Inflation and Beyond

(ロ)、(型)、(E)、(E)、 E) の(()

- Motivation for Hyperinflation
- Hyperinflation-Background
- Hyperinflation-Perturbations
- Observational Constraints
- Motivation for Further Work

Single-field Slow-roll Inflation and Beyond

- Inflation⁰: Motivated by zero-order problems of C.S.M (Horizon& Flatness)
- Quantum fluctuations strecched out of the horizon seed LSS
- Single-field slow-roll: Scalar rolls down its potential ¹
- Agreement with observations²

・ コット (雪) マイヨット (雪) (日)

- ¹Adv. Ser. Astrophys. Cosmol. 3 (1987), 149-153
- ²Astron. Astrophys. 594 (2016), A13 [arXiv:1502.01589 [astro-ph.CO]].
- ³Phys. Rev. D 49 (1994), 748-754 [arXiv:astro-ph/9307002 [astro-ph]]
- ⁴JHEP 01 (2020), 073 [arXiv:1907.10403 [hep-th]]

⁰Adv. Ser. Astrophys. Cosmol. 3 (1987), 139-148

Single-field Slow-roll Inflation and Beyond

- Inflation⁰: Motivated by zero-order problems of C.S.M (Horizon& Flatness)
- Quantum fluctuations strecched out of the horizon seed LSS
- Single-field slow-roll: Scalar rolls down its potential ¹
- Agreement with observations²
- \Rightarrow Why bother with multiple fields, then?
 - Natural from particle theory viewpt
 - Richer phenomenology ³
 - "Swampland" Conjectures
 - Non-Gaussianity Signatures ⁴
- ⁰Adv. Ser. Astrophys. Cosmol. **3** (1987), 139-148
- ¹Adv. Ser. Astrophys. Cosmol. 3 (1987), 149-153
- ²Astron. Astrophys. 594 (2016), A13 [arXiv:1502.01589 [astro-ph.CO]].
- ³Phys. Rev. D **49** (1994), 748-754 [arXiv:astro-ph/9307002 [astro-ph]]
- ⁴JHEP **01** (2020), 073 [arXiv:1907.10403 [hep-th]]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

⁵ JCAP 02 (2008), 010 [arXiv:0709.2666 [hep-th]]

⁶Phys. Rev. Lett. **121** (2018) no.25, 251601 [arXiv:1705.03023 [hep-th]].

⁷JHEP 04 (2019), 172 [arXiv:1901.08603 [hep-th]].

►

Required # of e-folds: 1-D, Potential Tuning \downarrow 2-D, Centrifugal force

• Spinflation⁵: \mathbb{R}^2 Field-space

$$S_{R^2} = \int dt \, d^3x \left[a^3(t) \left(-\frac{1}{2} (\nabla_{\mu} \rho)^2 - \frac{1}{2} (\nabla_{\mu} \phi)^2 - V(\rho) \right) \right] \tag{1}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Velocities redshift: angular motion becomes irrelevant.

⁵ JCAP 02 (2008), 010 [arXiv:0709.2666 [hep-th]]

⁶Phys. Rev. Lett. **121** (2018) no.25, 251601 [arXiv:1705.03023 [hep-th]].

⁷JHEP 04 (2019), 172 [arXiv:1901.08603 [hep-th]].

- Required # of e-folds: 1-D, Potential Tuning ↓ 2-D, Centrifugal force
 - Spinflation⁵: \mathbb{R}^2 Field-space

$$S_{R^2} = \int dt \, d^3x \left[a^3(t) \left(-\frac{1}{2} (\nabla_{\mu} \rho)^2 - \frac{1}{2} (\nabla_{\mu} \phi)^2 - V(\rho) \right) \right]$$
(1)

Velocities redshift: angular motion becomes irrelevant.

• Hyperinflation⁶: \mathbb{H}^2 field space with curvature scale M_H

$$S_{H^2} = \int dt \, d^3x \left[a^3(t) \left(-\frac{1}{2} (\nabla_\mu \rho)^2 - \frac{1}{2} M_H^2 \sinh^2 \left(\frac{\rho}{M_H} \right) (\nabla_\mu \phi)^2 - V(\rho) \right) \right]$$
(2)

field-space $J = M_H^2 \sinh^2 \left(\frac{\phi}{M_H}\right) \dot{\psi}$ exponentially large

Angular motion relevant throughout inflation.

⁵ JCAP **02** (2008), 010 [arXiv:0709.2666 [hep-th]]

⁶Phys. Rev. Lett. **121** (2018) no.25, 251601 [arXiv:1705.03023 [hep-th]].

⁷JHEP 04 (2019), 172 [arXiv:1901.08603 [hep-th]].

- Required # of e-folds: 1-D, Potential Tuning ↓ 2-D, Centrifugal force
 - Spinflation⁵: \mathbb{R}^2 Field-space

$$S_{R^2} = \int dt \, d^3x \left[a^3(t) \left(-\frac{1}{2} (\nabla_{\mu} \rho)^2 - \frac{1}{2} (\nabla_{\mu} \phi)^2 - V(\rho) \right) \right]$$
(1)

Velocities redshift: angular motion becomes irrelevant.

• Hyperinflation⁶: \mathbb{H}^2 field space with curvature scale M_H

$$S_{H^{2}} = \int dt \, d^{3}x \left[a^{3}(t) \left(-\frac{1}{2} (\nabla_{\mu} \rho)^{2} - \frac{1}{2} M_{H}^{2} \sinh^{2} \left(\frac{\rho}{M_{H}} \right) (\nabla_{\mu} \phi)^{2} - V(\rho) \right) \right]$$
(2)
field-space $J = M_{H}^{2} \sinh^{2} \left(\frac{\phi}{M_{H}} \right) \dot{\psi}$ exponentially large

Angular motion relevant throughout inflation.

▶ F-S J delaying Inflation → Adiabatic Perturbations (scale invariant)

⁵ JCAP **02** (2008), 010 [arXiv:0709.2666 [hep-th]]

⁶Phys. Rev. Lett. **121** (2018) no.25, 251601 [arXiv:1705.03023 [hep-th]].

⁷JHEP 04 (2019), 172 [arXiv:1901.08603 [hep-th]].

- Required # of e-folds: 1-D, Potential Tuning ↓ 2-D, Centrifugal force
 - Spinflation⁵: \mathbb{R}^2 Field-space

$$S_{R^2} = \int dt \, d^3x \left[a^3(t) \left(-\frac{1}{2} (\nabla_{\mu} \rho)^2 - \frac{1}{2} (\nabla_{\mu} \phi)^2 - V(\rho) \right) \right]$$
(1)

A D N A 目 N A E N A E N A B N A C N

Velocities redshift: angular motion becomes irrelevant.

• Hyperinflation⁶: \mathbb{H}^2 field space with curvature scale M_H

$$S_{H^2} = \int dt \, d^3x \left[a^3(t) \left(-\frac{1}{2} (\nabla_{\mu} \rho)^2 - \frac{1}{2} M_H^2 \sinh^2 \left(\frac{\rho}{M_H} \right) (\nabla_{\mu} \phi)^2 - V(\rho) \right) \right]$$
(2)
field-space $J = M_H^2 \sinh^2 \left(\frac{\phi}{M_H} \right) \dot{\psi}$ exponentially large

Angular motion relevant throughout inflation.

- ▶ F-S J delaying Inflation → Adiabatic Perturbations (scale invariant)
- $\epsilon \approx 1$: Swampland Evaded⁷ (?)

⁵ JCAP **02** (2008), 010 [arXiv:0709.2666 [hep-th]]

⁶Phys. Rev. Lett. **121** (2018) no.25, 251601 [arXiv:1705.03023 [hep-th]].

⁷JHEP 04 (2019), 172 [arXiv:1901.08603 [hep-th]].

The action: Rescaling the fields w.r.t. the F-S curvature scale, $\Phi^a \rightarrow \frac{\phi^a}{M_{\mu}}$

$$S = \frac{1}{2} \int d^D x \sqrt{-g} \left[M_\rho^2 R - M_H^2 \mathcal{G}^{ab}(\phi) \partial_\mu \phi^a \partial_\nu \phi^b g^{\mu\nu} - 2V \right].$$
(3)

 $g^{\mu
u}$ is the FRW metric $ds^2 = -dt^2 + a(t)\delta_{ij}dx^i dx^j$

The action: Rescaling the fields w.r.t. the F-S curvature scale, $\Phi^a \rightarrow \frac{\phi^a}{M_{\mu}}$

$$S = \frac{1}{2} \int d^D x \sqrt{-g} \left[M_p^2 R - M_H^2 \mathcal{G}^{ab}(\phi) \partial_\mu \phi^a \partial_\nu \phi^b g^{\mu\nu} - 2V \right].$$
(3)

 $g^{\mu\nu}$ is the FRW metric $ds^2 = -dt^2 + a(t)\delta_{ii}dx^i dx^j$

The F-S Metric: $d\Sigma = d\rho^2 + f^2(\rho) d\phi^2$

For $\rho >> 1$, $f(\rho) = M_H \sinh(\rho) \approx M_H e^{\rho}$

The action: Rescaling the fields w.r.t. the F-S curvature scale, $\Phi^a \rightarrow \frac{\phi^a}{M_{\mu}}$

$$S = \frac{1}{2} \int d^D x \sqrt{-g} \left[M_p^2 R - M_H^2 \mathcal{G}^{ab}(\phi) \partial_\mu \phi^a \partial_\nu \phi^b g^{\mu\nu} - 2V \right].$$
(3)

 $g^{\mu
u}$ is the FRW metric $ds^2 = -dt^2 + a(t)\delta_{ij}dx^idx^j$

The F-S Metric: $d\Sigma = d\rho^2 + f^2(\rho) d\phi^2$

For $\rho >> 1$, $f(\rho) = M_H \sinh(\rho) \approx M_H e^{\rho}$ The Potential⁸:

$$V(\rho) \approx V_0 e^{\frac{M_H^2}{M_\rho^2} p \rho}, \qquad \qquad p \equiv \frac{M_\rho^2}{M_\mu^2} \frac{\partial \left[\ln V\right]}{\partial \rho}$$
(4)

The action: Rescaling the fields w.r.t. the F-S curvature scale, $\Phi^a \rightarrow \frac{\phi^a}{M_{\mu}}$

$$S = \frac{1}{2} \int d^D x \sqrt{-g} \left[M_p^2 R - M_H^2 \mathcal{G}^{ab}(\phi) \partial_\mu \phi^a \partial_\nu \phi^b g^{\mu\nu} - 2V \right].$$
(3)

 $g^{\mu
u}$ is the FRW metric $ds^2 = -dt^2 + a(t)\delta_{ij}dx^idx^j$

The F-S Metric: $d\Sigma = d\rho^2 + f^2(\rho) d\phi^2$

For $\rho >> 1$, $f(\rho) = M_H \sinh(\rho) \approx M_H e^{\rho}$ The Potential⁸:

$$V(\rho) \approx V_0 e^{\frac{M_H^2 p \rho}{M_p^2} p \rho}, \qquad \qquad p \equiv \frac{M_\rho^2}{M_H^2} \frac{\partial \left[\ln V\right]}{\partial \rho}$$
(4)

The coordinates: Projections of the F-S velocity $\perp \& \parallel$ to the Killing direction $k_a = (0, f(\rho))$: $(x, y) \equiv (\rho', f(\rho) \phi')$.

The action: Rescaling the fields w.r.t. the F-S curvature scale, $\Phi^a \rightarrow \frac{\phi^a}{M_{\mu}}$

$$S = \frac{1}{2} \int d^D x \sqrt{-g} \left[M_p^2 R - M_H^2 \mathcal{G}^{ab}(\phi) \partial_\mu \phi^a \partial_\nu \phi^b g^{\mu\nu} - 2V \right].$$
(3)

 $g^{\mu\nu}$ is the FRW metric $ds^2 = -dt^2 + a(t)\delta_{ii}dx^i dx^j$

The F-S Metric: $d\Sigma = d\rho^2 + f^2(\rho) d\phi^2$

For $\rho >> 1$, $f(\rho) = M_H \sinh(\rho) \approx M_H e^{\rho}$ The Potential⁸

$$V(\rho) \approx V_0 e^{\frac{M_H^2 p \rho}{M_p^2} p \rho}, \qquad \qquad p \equiv \frac{M_\rho^2}{M_H^2} \frac{\partial \left[\ln V\right]}{\partial \rho}$$
(4)

The coordinates: Projections of the F-S velocity $\perp \& \parallel$ to the Killing direction $k_a = (0, f(\rho)): (x, y) \equiv (\rho', f(\rho) \phi').$

EoM \rightarrow autonomous system:

$$x' = -(3 - \epsilon)(x + p_{\rho}) + y^{2}$$

$$y' = -(3 - \epsilon + x) y$$
(5)

and the Hubble flow parameter, in the small field limit $M_H \leq 10^{-3} M_{
m p}$

$$\epsilon = \frac{M_H^2}{2M_p^2} [x^2 + y^2] \to 0.$$
 (6)

⁸Phys. Rev. D **96** (2017) no.10, 103533 [arXiv:1707.05125 [hep-th]]

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Scaling solutions: $\epsilon' = 0$

Scaling solutions: $\epsilon' = 0$

• $[x, y] = [-p_{\rho}, 0] \Rightarrow$ Local Lyapunov exponents $(\lambda_1, \lambda_2) = (-3, p - 3)$.

$$\rho = \rho_0 - \frac{1}{3}\rho'(0) e^{-3N} - pN$$

$$\phi = \phi(0) + \frac{1}{p-3}\phi'(0) e^{(p-3)N}$$
(7)

Scaling solutions: $\epsilon' = 0$

▶ $[x, y] = [-p_{\rho}, 0] \Rightarrow$ Local Lyapunov exponents $(\lambda_1, \lambda_2) = (-3, p - 3)$.

$$\rho = \rho_0 - \frac{1}{3} \rho'(0) e^{-3N} - pN$$

$$\phi = \phi(0) + \frac{1}{p-3} \phi'(0) e^{(p-3)N}$$
(7)

Stable solution: p < 3

•
$$\rho' \rightarrow -p$$

• $\phi' \rightarrow 0$

Unstable solution: p > 3

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

- $\rho' \rightarrow -3$
- ϕ' increases

Scaling solutions: $\epsilon' = 0$

► $[x, y] = [-p_{\rho}, 0] \Rightarrow$ Local Lyapunov exponents $(\lambda_1, \lambda_2) = (-3, p - 3)$.

$$\rho = \rho_0 - \frac{1}{3}\rho'(0) e^{-3N} - pN$$

$$\phi = \phi(0) + \frac{1}{p-3}\phi'(0) e^{(p-3)N}$$
(7)

Stable solution: p < 3

Unstable solution: p > 3• $\rho' \rightarrow -3$

• ϕ' increases

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

► $[x, y]_{Hyper} = [-3, \pm\sqrt{3p-9}]$. Iff $p \ge 3$, potivity of square root argument. ⇒ The local Lyapunov exponents $(\lambda_1, \lambda_2) = (-\frac{3}{2} + \frac{3}{2}\sqrt{9-\frac{8}{3}p}, -\frac{3}{2} - \frac{3}{2}\sqrt{9-\frac{8}{3}p})$

►
$$[x, y]_{Hyper} = [-3, \pm\sqrt{3p-9}]$$
. Iff $p \ge 3$, potivity of square root argument
⇒ The local Lyapunov exponents
 $(\lambda_1, \lambda_2) = (-\frac{3}{2} + \frac{3}{2}\sqrt{9-\frac{8}{3}p}, -\frac{3}{2} - \frac{3}{2}\sqrt{9-\frac{8}{3}p})$

3 real eigenvalues $<math>\lambda_1 \neq \lambda_2 < 0$ critical point is a stable node.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

►
$$[x, y]_{Hyper} = [-3, \pm\sqrt{3p-9}]$$
. Iff $p \ge 3$, potivity of square root argument
⇒ The local Lyapunov exponents
 $(\lambda_1, \lambda_2) = (-\frac{3}{2} + \frac{3}{2}\sqrt{9 - \frac{8}{3}p}, -\frac{3}{2} - \frac{3}{2}\sqrt{9 - \frac{8}{3}p})$

 $\begin{array}{l} 3$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• p = 3.375 single eigenvalue, $\lambda = -\frac{3}{2}$ improper stable node

►
$$[x, y]_{Hyper} = [-3, \pm\sqrt{3p-9}]$$
. Iff $p \ge 3$, potivity of square root argument
⇒ The local Lyapunov exponents
 $(\lambda_1, \lambda_2) = (-\frac{3}{2} + \frac{3}{2}\sqrt{9 - \frac{8}{3}p}, -\frac{3}{2} - \frac{3}{2}\sqrt{9 - \frac{8}{3}p})$

 $3 <math display="block">\lambda_1 \neq \lambda_2 < 0$ critical point is a stable node.

(日)

э

 $p = 3.375 \text{ single eigenvalue, } \lambda = -\frac{3}{2} \\ \text{improper stable node}$

p>3.375 compl. conjugate eigenvalues $Re(\lambda)<0$ system spirals towards stable focus

Background Dynamics - Combined

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへで

Background Dynamics - Combined

Hyperinflation is an attractor in the regime that gradient solution is a repeller.

イロト 不得 トイヨト イヨト

э

Perturbation Dynamics - Heuristic

Evolution of two neighboring trajectories in the configuration F-S:

Expected behaviour:

Adiabatic (along the trajectory) perturbations asymptote to a constant

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Isocurvature (normal to the trajectory) vanish

 \Rightarrow Switch to Local Orthogonal Basis. Define the adiabatic & entropic 9 directions:

$$\hat{\sigma}^{a} = \frac{\dot{\phi}^{a}}{\dot{\sigma}}, \qquad \qquad \hat{s}^{a} = \frac{1}{\sqrt{\mathcal{G}}} \,\epsilon^{ab} \,\hat{\sigma}^{b} \,\mathcal{G}_{bc}. \tag{8}$$

where $\dot{\sigma} = \sqrt{\mathcal{G}_{ab}\dot{\Phi}^{a}\,\dot{\Phi}^{b}}$ the background field velocity.

 \Rightarrow Switch to Local Orthogonal Basis. Define the adiabatic & entropic⁹ directions:

$$\hat{\sigma}^{a} = \frac{\dot{\phi}^{a}}{\dot{\sigma}}, \qquad \qquad \hat{s}^{a} = \frac{1}{\sqrt{\mathcal{G}}} \,\epsilon^{ab} \,\hat{\sigma}^{b} \,\mathcal{G}_{bc}. \tag{8}$$

where $\dot{\sigma} = \sqrt{G_{ab}\dot{\Phi}^a \dot{\Phi}^b}$ the background field velocity. \Rightarrow Zweibein transformation matrix is simple rotation for scaling solutions!

$$\begin{bmatrix} \hat{e}_{\sigma} \\ \hat{e}_{s} \end{bmatrix} = \begin{bmatrix} \frac{x}{\dot{\sigma}} & \frac{y}{f\dot{\sigma}} \\ \frac{y}{\dot{\sigma}} & -\frac{x}{f\dot{\sigma}} \end{bmatrix} \cdot \begin{bmatrix} \hat{e}_{\rho} \\ \hat{e}_{\phi} \end{bmatrix},$$
(9)

Define $z = \ln(\frac{k_*}{k})$ and $k_* = a(t) H$ the wavelength of mode that exits the horizon at time t.

 \Rightarrow Switch to Local Orthogonal Basis. Define the adiabatic & entropic⁹ directions:

$$\hat{\sigma}^{a} = \frac{\dot{\phi}^{a}}{\dot{\sigma}}, \qquad \qquad \hat{s}^{a} = \frac{1}{\sqrt{\mathcal{G}}} \,\epsilon^{ab} \,\hat{\sigma}^{b} \,\mathcal{G}_{bc}. \tag{8}$$

where $\dot{\sigma} = \sqrt{G_{ab}\dot{\Phi}^a \dot{\Phi}^b}$ the background field velocity. \Rightarrow Zweibein transformation matrix is simple rotation for scaling solutions!

$$\begin{bmatrix} \hat{e}_{\sigma} \\ \hat{e}_{s} \end{bmatrix} = \begin{bmatrix} \frac{x}{\dot{f}} & \frac{y}{f\dot{\sigma}} \\ \frac{y}{\dot{\sigma}} & -\frac{x}{f\dot{\sigma}} \end{bmatrix} \cdot \begin{bmatrix} \hat{e}_{\rho} \\ \hat{e}_{\phi} \end{bmatrix},$$
(9)

Define $z = \ln(\frac{k_*}{k})$ and $k_* = a(t) H$ the wavelength of mode that exits the horizon at time t.

The perturbation e.o.m:

$$\partial_{z}^{2} U_{I}^{\sigma} + 3 \partial_{z} U_{I}^{\sigma} + e^{-2z} U_{I}^{\sigma} + 6 y U_{I}^{s} + 2 y \partial_{z} U_{I}^{s} = 0$$

$$\partial_{z}^{2} U_{I}^{s} + 3 \partial_{z} U_{I}^{s} + e^{-2z} U_{I}^{s} - 2 y^{2} U_{I}^{s} - 2 y \partial_{z} U_{I}^{\sigma} = 0.$$
 (10)

 \Rightarrow Switch to Local Orthogonal Basis. Define the adiabatic & entropic 9 directions:

$$\hat{\sigma}^{a} = \frac{\dot{\phi}^{a}}{\dot{\sigma}}, \qquad \qquad \hat{s}^{a} = \frac{1}{\sqrt{\mathcal{G}}} \,\epsilon^{ab} \,\hat{\sigma}^{b} \,\mathcal{G}_{bc}. \tag{8}$$

where $\dot{\sigma} = \sqrt{G_{ab}\dot{\Phi}^a \dot{\Phi}^b}$ the background field velocity. \Rightarrow Zweibein transformation matrix is simple rotation for scaling solutions!

$$\begin{bmatrix} \hat{e}_{\sigma} \\ \hat{e}_{s} \end{bmatrix} = \begin{bmatrix} \frac{x}{\dot{\sigma}} & \frac{y}{f\dot{\sigma}} \\ \frac{y}{\dot{\sigma}} & -\frac{x}{f\dot{\sigma}} \end{bmatrix} \cdot \begin{bmatrix} \hat{e}_{\rho} \\ \hat{e}_{\phi} \end{bmatrix},$$
(9)

Define $z = \ln(\frac{k_*}{k})$ and $k_* = a(t) H$ the wavelength of mode that exits the horizon at time t.

The perturbation e.o.m:

$$\partial_{z}^{2} U_{I}^{\sigma} + 3 \partial_{z} U_{I}^{\sigma} + e^{-2z} U_{I}^{\sigma} + 6 y U_{I}^{s} + 2 y \partial_{z} U_{I}^{s} = 0$$

$$\partial_{z}^{2} U_{I}^{s} + 3 \partial_{z} U_{I}^{s} + e^{-2z} U_{I}^{s} - 2 y^{2} U_{I}^{s} - 2 y \partial_{z} U_{I}^{\sigma} = 0.$$
 (10)

Initilisation ansatz: $z\to -\infty,$ modes are decoupled, unaffected by the field-space curvature induced mixing.

$$U_{initial}^{(\sigma,s)} = \frac{H}{\sqrt{k^3}} \frac{\sqrt{\pi}}{2} e^{-\left(\frac{3}{2}z\right)} H_{\frac{3}{2}}(z)$$
(11)

Perturbation Dynamics - Plots

 $\Rightarrow \text{ As } y \text{ increases, the modes reach their respective asymptote faster} \downarrow \\ n_s^{ad} = 1 + \frac{d \ln[\mathcal{P}_\sigma]}{d(\ln k)} \rightarrow \text{ unobservable : Constraint } y < 1.$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Perturbation Dynamics - Plots

v = 0.02

v = 0.05

v = 0.1

60

⇒ Measured¹⁰ value of adiabatic perturbations spectral index: $n_s = 0.968 \pm 0.006$ \downarrow $0.8 \times 10^{-2} \le y \le 10^{-2} \&$ $0.16 \le y \le 0.19.$

⇒ Measured¹⁰ value of adiabatic perturbations spectral index: $n_s = 0.968 \pm 0.006$ \downarrow $0.8 \times 10^{-2} \le y \le 10^{-2} \&$ $0.16 \le y \le 0.19.$

 \Rightarrow The tensor-to-scalar ratio:

$$r_* = \frac{\Delta_t^2(k)}{\Delta_s^2(k)} = \frac{4 M_H^2}{M_p^2} \frac{9 + y^2}{\langle |U_k|^2 \rangle} \quad (12)$$

¹⁰Astron. Astrophys. 594 (2016), A13[arXiv:1502.01589 [astro-ph.CO]].

 \Rightarrow Direct contradiction with the "Swampland" deSitter conjecture: $\epsilon\approx 1.$ Hyperinflation still stuck in the Swampland

¹⁰Astron. Astrophys. 594 (2016), A13[arXiv:1502.01589 [astro-ph.CO]]. < < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + < > + <

Background & Perturbation dynamics:

(ロ)、(型)、(E)、(E)、 E) の(()

Background & Perturbation dynamics:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Cosmological Impliations:

Background & Perturbation dynamics:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Cosmological Impliations:
- ▶ 2- & Higher point functions : ?

Background & Perturbation dynamics:

(ロ)、(型)、(E)、(E)、 E) の(()

- Cosmological Impliations:
- ► 2- & Higher point functions : ? ↓ I-R limit: Stochastic Hyperinflation!

- Background & Perturbation dynamics:
- Cosmological Impliations:
- ▶ 2- & Higher point functions : ?
 ↓

 I-R limit: Stochastic Hyperinflation! Non-Gaussian Signature ...

ヘロト 人間 とくほとくほとう

æ

Thank you for your attention!