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Motivation

! In the beginning there was the Big 
Bang, shortly after the Big Bang 
there was inflation. 

! String theory compactification can 
produce a landscape, from which 
the inflaton field arises as a single 
degree of freedom in a 100+ 
dimensional potential 

! In this picture, the universe inflates 
when the gradient of the field is 
small (slow-roll), and evolution ends 
at a local minimum slightly above 
zero (corresponding to dark energy).



Research questions

! Given a minimum, how likely is it to have potential value Λ > 0? 
! This has got to be < 0.5, because there should be more minima with Λ < 0. 

! How steep are the slopes leading into this minimum? 
! Before inflation, the universe was presumably at a saddle with only 

one downhill direction. How steep are the slopes leading out of this 
saddle?



Random Gaussian Fields

! Problem: the string theory landscape is formidably 
complex. 

! Idea: model the string landscape as a Random 
Gaussian Field. 

! Random Gaussian Field: the definition is technical, 
but the idea is analogous to that of Gaussian 
distributions. By the central limit theorem, 
independent random variables tend towards this 
distribution. 

! By assuming that the ~100 dimensional potential 
of the string theory landscape is Gaussian 
Random, we are assuming that it arises from the 
superposition of a large number of independent, 
uncorrelated interaction terms. 

! Simplest way to model a very complicated 
function



Math …
! Gaussians have two parameters. Random Gaussian 

Fields have three: σ0, σ1 and σ2,corresponding to the 
square root of the average of the square of the 
potential, first derivative and second derivative 
respectively. 

! A key result is that only the combination γ= σ1
2/ σ0 σ2 

is relevant for our purposes. 
! This is because we can rescale the potential or the field, 

and not affect the statistics. 

! γ can be thought of as a measure of how turbulent 
the potential is. When it is small, the potential is more 
turbulent. 

! It can be shown that 0 < γ < 1



Math …
! The technical details are in our paper on the arXiv. 
!  Ultimately, the integral we want to compute is (for N = 4): 

! Where the λ’s are the eigenvalues of the Hessian at the point, and the αKα are polynomial 
functions of the λ’s (with some contribution from γ and V). 

! If anyone knows how to compute this integral in 100 dimensions efficiently – let me know.



How does probability vary with γ 
and N?

! Note that as N increases or γ increases, P(min) decreases. 
! The more fields there are, the less likely it is that all fields reach a minimum at a point. Similarly, 

the less turbulent a potential is, the fewer minima we get. 

! But it is not so obvious how P(Λ > 0|min) behaves. 
! Left figure: P(Λ > 0|min) for γ = 0.2, 0.5 and 0.8; right figure: P(Λ > 0|min) for N = 3, 5 

and 8.



Results

! From top to bottom: γ = 0.2, 0.5, 0.8 
and 0.9.



Results

! Another view of the same 
calculation. 

! String theory is said to have ~ 10500 
minima, but there’s a region of 
parameter space where even 10500 
minima might not suffice to have 
one that has Λ > 0! 

! In the specific case of a Gaussian 

power spectrum, γ =  . At 

N = 100, P(Λ > 0|min) ~ 10-780
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Eigenvalue distribution
! The eigenvalues of the Hessian at a 

point roughly correspond to the 
slopes at the point. 

! For these calculations, we examine 
the eigenvalues at the single most-
likely point. 

! Figure for N = 100, γ = 0.9. Red line: 
most likely point; blue line: most 
likely point with constraint Λ = 0. 

! It can be shown that the red line is 
independent of γ. 

! Looks like a Wigner semicircle, with 
deviations at very small 
eigenvalues.



Eigenvalue distribution

! These are the biggest and 
smallest expected 
eigenvalues. 

! Dashed lines: overall peak; 
solid lines: peak with Λ = 0.



Eigenvalue distribution

! We can plot all the eigenvalues … 
! N = 100, γ = 0.9. Orange line: overall 

peak, blue line: peak with Λ = 0.



Eigenvalue distribution

! Or the ratio of the two smallest 
eigenvalues … 

! Orange line: ratio at overall peak 
(does not depend on γ); green line: 
γ = 0.5, Λ = 0; blue line: γ = 0.9, Λ = 
0.



Saddles

! We can also investigate saddles. The only difference is that we 
require one eigenvalue to be below zero. 

! In this case, our primary focus is the slow-roll inflation parameter η = 
1/8πG (V''/V). V'' is related to the eigenvalues, and V (i.e. Λ) is in 
the αKα factor. We can directly calculate it! 

! Inflation requires η to be << 1 
! We also need the correlation length to not be large (or small η would 

be trivial) 
! Correlation length measures how much knowledge of the inflaton at one 

point reveals about the value at a more distant point. Physically, at some 
point, correlation must drop to zero. 

! A large correlation length is also unphysical in string theory.



Results

! The results depend on what γ is. In 
turn, γ depends on what the power 
spectrum is. 

! A nice intermediate result is that if γ 
is constant, then we observe η 
decreasing with dimensions! 
! Figure for γ = 0.95, V = 0.01 mpl. V < 

~0.01 mpl is observationally required 
because of the non-detection of b-
mode polarization. 

! This implies that if η is not << 1 at N 
= 100, we can just increase N and 
still "get there".



Results

! Gaussian power spectra 

! γ =   

! Plot at V = 0.01 mpl 

! On the y-axis, Λ is the correlation 
length

𝑁
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Results

! Power law power spectrum, 
P(k)=Ak-n, with infrared cutoff 

! γ =   

! Top plot: n = 2N+1/2, V = 0.01 mpl 

! Looks good, but … 
! Bottom plot: correlation length 

increases with N

(𝑛 − 4 − 𝑁 )(𝑛 − 𝑁 )
𝑛 − 𝑁 − 2



Results

! Other power spectra? 
! Try: convolution of two Gaussians 
! Can we vary the four free 

parameters such that γ is constant? 
! Unfortunately, the answer is 

probably “no”. Details are 
complicated, and there is no 
conclusive proof, but there is reason 
to believe that no such 
combination exists to have 
constant γ but also non-increasing 
Λ



Conclusion

! The Random Gaussian Field approximation lets us ask physical 
questions of the landscape and get calculable answers. 

! Under the Random Gaussian Field approximation, inflation is not 
favoured for common power spectra. 
! This doesn’t mean inflation is impossible (all calculations above are at the 

most likely saddle), but it does mean inflation is not likely. 
! It’s possible a more complicated power spectrum works, but that would 

invoke complex physics and therefore defeat the purpose of the 
approximation. 

! The end?


