

Relaxing the cosmological neutrino mass bound with late neutrino mass generation

Christiane S. Lorenz (ETH) and Lena Funcke (Perimeter Institute) In collaboration with Erminia Calabrese, Gia Dvali and Steen Hannestad Based on arXiv:1602.03191 and arXiv:1811.01991

Cosmology from Home Conference, September 2020

Neutrino mass bounds from cosmology

Impact of Σm_{ν} on the matter power spectrum:

Image credit: Allison et al. (2015)

Good reviews on neutrino cosmology: Lesgourgues and Pastor (2006).; Lesgourgues et al. (2013); Lattanzi and Gerbino (2017).

Neutrino mass parameter space

Image credit: Abazajian et al. (CMB Stage 4 Collaboration) (2019).

What if KATRIN discovers the absolute ν_e mass?

What if KATRIN discovers the absolute ν_e mass?

In that case, how could cosmology and particle physics be reconciled?

 Σm_{ν} is constrained to be ...

[1] Aghanim et al. (Planck Collaboration) (2018).

[1] Aghanim et al. (Planck Collaboration) (2018).

Σm_{ν} is constrained to be			
$\Sigma m_ u <$ 120 meV	Λ CDM (Planck 2018 CMB + BAO)	[1]	
$\Sigma m_ u <$ 120 meV	$\Lambda CDM + N_{eff}$ (Planck 2018 CMB + BAO)	[1]	
$\Sigma m_ u < 290$ meV	ACDM with $w(a) = w_0 + w_a(1 - a)$ (Planck 2018 CMB + BAO + SN)	[2]	

[1] Aghanim et al. (Planck Collaboration) (2018). [2] Choudhury and Hannestad (2020).

$\Sigma m_{ u}$ is constrained to be			
$\Sigma m_ u < 120 \; { m meV}$	ACDM (Planck 2018 CMB + BAO)	[1]	
$\Sigma m_ u < 120 \; { m meV}$	$\Lambda \text{CDM} + N_{eff} \text{ (Planck 2018 CMB + BAO)}$	[1]	
$\Sigma m_ u < 290$ meV	Λ CDM with $w(a) = w_0 + w_a(1 - a)$ (Planck 2018 CMB + BAO + SN)	[2]	
$\Sigma m_ u < 0.9 \; { m eV}$	$\Lambda CDM + u$ decays (Planck 2015 CMB + BAO + SN)	[3]	

Aghanim et al. (Planck Collaboration) (2018). [2] Choudhury and Hannestad (2020).
 Chacko et al. (2019).

C. S. Lorenz and L. Funcke

$\Sigma m_{ u}$ is constrained to be			
$\Sigma m_ u < 120$ meV	ACDM (Planck 2018 CMB + BAO)	[1]	
$\Sigma m_ u < 120$ meV	$\Lambda \text{CDM} + N_{eff} \text{ (Planck 2018 CMB + BAO)}$	[1]	
$\Sigma m_ u < 290 \; { m meV}$	Λ CDM with $w(a) = w_0 + w_a(1 - a)$ (Planck 2018 CMB + BAO + SN)	[2]	
$\Sigma m_ u < 0.9$ eV	$\Lambda CDM + u$ decays (Planck 2015 CMB + BAO + SN)	[3]	
$\Sigma m_ u <$ 4.8 eV	$\begin{array}{l} \Lambda \textbf{CDM} + m_{\nu}(z) \text{ from supercooled phase} \\ \textbf{transition in relic neutrino sector} \\ (\text{Planck 2015 CMB} + \text{BAO} + \text{SN}) \end{array}$	[4]	

Aghanim et al. (Planck Collaboration) (2018). [2] Choudhury and Hannestad (2020).
 Chacko et al. (2019). [4] CSL, LF et al. (2018).

Neutrino masses...

▶ ... are predicted to be zero by the Standard Model (SM).

Neutrino masses...

- ▶ ... are predicted to be zero by the Standard Model (SM).
- ▶ ... were experimentally discovered to be *nonzero* but tiny.

Neutrino masses...

- ▶ ... are predicted to be zero by the Standard Model (SM).
- ▶ ... were experimentally discovered to be *nonzero* but tiny.
- ▶ ... are important for cosmological and astrophysical models.

Neutrino masses...

- ▶ ... are predicted to be zero by the Standard Model (SM).
 - ... were experimentally discovered to be nonzero but tiny.
- ... are important for cosmological and astrophysical models.
- ▶ ... are among the main motivations for physics beyond the SM!

Image credits: IKEA and Murayama (2018). [5] Dvali, LF (2016a)

C. S. Lorenz and L. Funcke

Image credits: IKEA and Murayama (2018). [5] Dvali, LF (2016a)

Analogy: quark condensation and effective mass generation in QCD

Analogy: quark condensation and effective mass generation in QCD

Non-perturbative topological vacuum effects in gravity

Analogy: quark condensation and effective mass generation in QCD

[6] Delbourgo, Salam (1972); Eguchi, Freund (1976); Deser, Duff, Isham (1980).

Analogy: quark condensation and effective mass generation in QCD

[6] Delbourgo, Salam (1972); Eguchi, Freund (1976); Deser, Duff, Isham (1980).

[7] Dvali (2005); Dvali, Jackiw, Pi (2006); Dvali, Folkerts, Franca (2014).

Analogy: quark condensation and effective mass generation in QCD

[6] Delbourgo, Salam (1972); Eguchi, Freund (1976); Deser, Duff, Isham (1980).

[7] Dvali (2005); Dvali, Jackiw, Pi (2006); Dvali, Folkerts, Franca (2014).

C. S. Lorenz and L. Funcke

Analogy: quark condensation and effective mass generation in QCD

[6] Delbourgo, Salam (1972); Eguchi, Freund (1976); Deser, Duff, Isham (1980).

[7] Dvali (2005); Dvali, Jackiw, Pi (2006); Dvali, Folkerts, Franca (2014). [5] Dvali, LF (2016a).

Analogy: quark condensation and effective mass generation in QCD

[6] Delbourgo, Salam (1972); Eguchi, Freund (1976); Deser, Duff, Isham (1980).

[7] Dvali (2005); Dvali, Jackiw, Pi (2006); Dvali, Folkerts, Franca (2014). [5] Dvali, LF (2016a).

Neutrino condensate $|\langle \bar{
u}
u
angle| \sim$ scale $\Lambda_G^3 \sim$ temperature $T_{\mathrm{transition}}^3$

Neutrino condensate $|\langle \bar{\nu}\nu \rangle| \sim \text{scale } \Lambda_G^3 \sim \text{temperature } T_{\text{transition}}^3$

Neutrino condensate $|\langle \bar{\nu}\nu \rangle| \sim \text{scale } \Lambda_G^3 \sim \text{temperature } T_{\text{transition}}^3$

Neutrino condensate $|\langle\bar\nu\nu\rangle|\sim$ scale $\Lambda_G^3\sim$ temperature ${\cal T}_{\rm transition}^3$ Λ_G

 $\sim 0.3~{\rm eV}$

Upper bound from SM and free-streaming [5,8]

[5] Dvali, LF (2016a). [8] Archidiacono, Hannestad (2014)
 Image credits: NASA / WMAP Science Team [http://map.gsfc.nasa.gov/]

[5] Dvali, LF (2016a). [8] Archidiacono, Hannestad (2014) [9] Tanabashi et al. (Particle Data Group) (2018). Image credits: NASA / WMAP Science Team [http://map.gsfc.nasa.gov/] and Patterson (2005).

\Rightarrow Neutrino vacuum condensate $\langle ar{ u} u angle$ on dark energy scale

[5] Dvali, LF (2016a). [8] Archidiacono, Hannestad (2014) [9] Tanabashi et al. (Particle Data Group) (2018). Image credits: NASA / WMAP Science Team [http://map.gsfc.nasa.gov/] and Patterson (2005).

Post-recombination phase transition

- \blacktriangleright Relic neutrinos massless until late phase transition at $T_{\nu} \lesssim \Lambda_{G}$ [5]
- ▶ Neutrinos decay and partially annihilate $\Rightarrow \sum_i m_{\nu_i} \not\lesssim 0.12 \text{ eV}$

[5] Dvali, LF (2016a).

Post-recombination phase transition

- \blacktriangleright Relic neutrinos massless until late phase transition at $\mathcal{T}_{\nu} \lesssim \Lambda_{G}$ [5]
- ▶ Neutrinos decay and partially annihilate $\Rightarrow \sum_{i} m_{\nu_i} \not\leq 0.12 \text{ eV}$ $\Rightarrow \text{Masses } m_{\nu_e} \leq 1.1 \text{ eV} \text{ still allowed, measurable at KATRIN [11]}$

[5] Dvali, LF (2016a).

Post-recombination phase transition

- \blacktriangleright Relic neutrinos massless until late phase transition at $\mathcal{T}_{\nu} \lesssim \Lambda_{G}$ [5]
- ▶ Neutrinos decay and partially annihilate $\Rightarrow \sum_{i} m_{\nu_i} \not\leq 0.12 \text{ eV}$ $\Rightarrow \text{Masses } m_{\nu_e} \leq 1.1 \text{ eV still allowed, measurable at KATRIN [11]}$
- ▶ Phase transition can be of first order and thus supercooled:

[5] Dvali, LF (2016a). [11] Aker et al. (KATRIN) (2019).

Post-recombination phase transition

- \blacktriangleright Relic neutrinos massless until late phase transition at $\mathcal{T}_{\nu} \lesssim \Lambda_{G}$ [5]
- ▶ Neutrinos decay and partially annihilate $\Rightarrow \sum_{i} m_{\nu_i} \not\leq 0.12 \text{ eV}$ \Rightarrow Masses $m_{\nu_e} \leq 1.1 \text{ eV}$ still allowed, measurable at KATRIN [11]
- ▶ Phase transition can be of first order and thus supercooled:

Cosmological analysis of a simplified version of this model [12]

[5] Dvali, LF (2016a). [11] Aker et al. (KATRIN) (2019). [12] CSL, LF et al. (2018).

Energy densities of cosmological components in this scenario:

CSL, LF et al. (2018).

Relaxing the cosmological neutrino mass bound

CSL, LF et al. (2018).

C. S. Lorenz and L. Funcke

Impact on cosmological tensions

Cosmological tensions are unaffected:

- ▶ Ω_m - σ_8 countours are broadened, but do not overlap more
- ► Hubble parameter tension is unaffected

CSL, LF et al. (2018).

Assumption: pure gravity contains physical θ -term.

Assumption: pure gravity contains physical θ -term.

Theoretical consequences:

- Neutrino condensation
- Small effective neutrino mass generation
- Independent of Higgs or Seesaw mechanisms
- More details: 1602.03191, 1608.08969, 1905.01264

Cosmological implications:

- Cosmological neutrino mass bound weakened
- Strong degeneracy with the dark energy sector
- Possible signatures at KATRIN, Euclid, DESI...
- ▶ More details: 1811.01991

Thanks for listening!

Do you have any questions?