Phenomenology of CP-Violating Higgs Portal Dark Matter

Cosmology from Home 2020

W. Linda Xu with Katherine Fraser & Aditya Parikh

Harvard University

W. Linda Xu

Revisiting the WIMP Solution to DM

For:

- Easily motivated
- Thermal Relic picture
- Experimental Anomalies
 - Fermi-LAT*
 - AMS-02 (?)

Against:

 Stringent direct detection constraints

2/22

Revisiting the WIMP Solution to DM

For:

- Easily motivated
- ► Thermal Relic picture
- Experimental Anomalies
 - Fermi-LAT*
 - AMS-02 (?)

Against:

 Stringent direct detection constraints

Annihilation Good $[\sim \rm pb]$

Scattering Bad $[\lesssim 10^{-10} \mathrm{pb}]$

Fermi Galactic Center Excess

Excess in gamma-rays in GC

Possibly unresolved point sources (e.g. MSPs)

[Abazajian et. al '14, many others]

Possibly annihilating DM

[Goodenough & Hooper '09, many others]

- ▶ *O*(60 GeV) DM
- ► WIMP-like cross section ~ 3 pb
- Favors Higgs-like branching-ratios

Outline

Introduction

- The Dark Matter EFT
 - Model Description
 - Constraints
- Some UV Completions
 - Singlet-Doublet
 - Doublet-Triplet
 - Constraints

4/22

Outline

Introduction

- The Dark Matter EFT
 - Model Description
 - Constraints
- Some UV Completions
 - Singlet-Doublet
 - Doublet-Triplet
 - Constraints

Goal: Develop a DM model which

- annihilates with TR-like rates
- has BRs consistent with GCE
- respects Scattering bounds

CP-Violating Higgs Portal Dark Matter

- Higgs Portal with complex coupling $y_{h\chi}$
- Majorana Fermion DM

$$\mathcal{L} \supset \frac{\operatorname{Re}[y_{h\chi}]}{\sqrt{2}} h \bar{\chi} \chi + \frac{i \operatorname{Im}[y_{h\chi}]}{\sqrt{2}} h \bar{\chi} \gamma^5 \chi + g_{Z\chi} Z_{\mu} \bar{\chi} \gamma^{\mu} \gamma^5 \chi$$

$$\chi \longrightarrow y_{h\chi} \longrightarrow \chi$$

$$f \qquad \chi \longrightarrow y_{h\chi} \longrightarrow \chi$$

$$f \qquad f \qquad f \longrightarrow f$$

The Dark Matter EFT – Annihilation

$$\mathcal{L} \supset \frac{\operatorname{Re}[y_{h\chi}]}{\sqrt{2}} h \bar{\chi} \chi + \frac{i \operatorname{Im}[y_{h\chi}]}{\sqrt{2}} h \bar{\chi} \gamma^5 \chi + g_{Z\chi} Z_{\mu} \bar{\chi} \gamma^{\mu} \gamma^5 \chi$$

In the non-relativistic limit

 $h \bar{\chi} \chi$ annihilation is suppressed

 $\langle \sigma v \rangle \propto \mathrm{Im}[y_{h\chi}]^2$

The Dark Matter EFT – Scattering

$$\mathcal{L} \supset \frac{\operatorname{Re}[y_{h\chi}]}{\sqrt{2}} h \bar{\chi} \chi + \frac{i \operatorname{Im}[y_{h\chi}]}{\sqrt{2}} h \bar{\chi} \gamma^5 \chi + g_{Z\chi} Z_{\mu} \bar{\chi} \gamma^{\mu} \gamma^5 \chi$$

In the non-relativistic limit

 $h \bar{\chi} \gamma^5 \chi$ scattering is suppressed $\chi + \sigma_{SI} \propto \text{Re}[y_{h\chi}]^2$ f $Z_{\mu} \bar{\chi} \gamma^{\mu} \gamma^5 \chi$ sets SD scattering $\chi + \sigma_{SD} \propto g_{Z\chi}^2$ f

W. Linda Xu

The Dark Matter EFT – Constraints

8/22

The Dark Matter EFT – Constraints

> 1. $\chi \sim m_h/2$, small $y_{h\chi}$ 2. $\phi_{h\chi} \sim \pi/2$, large $y_{h\chi}$

The Dark Matter EFT – Constraints

 10^{-4}

20 40 60

W. Linda Xu

Phenomenology of CP-Violating Higgs Portal Dark Matter

- 10-9

80 100

 m_{γ} [GeV]

Outline

Introduction

- The Dark Matter EFT
 - Model Description
 - Constraints
- Some UV Completions
 - Singlet-Doublet
 - Doublet-Triplet
 - Constraints

10/22

Outline

Introduction

- The Dark Matter EFT
 - Model Description
 - Constraints
- Some UV Completions
 - Singlet-Doublet
 - Doublet-Triplet
 - Constraints

Goal: UV complete this model so

- theory isn't gauge anomalous
- has at least 1 free phase for CP-violation
- is consistent with all known constraints

A Singlet-Doublet Realization

$$\begin{array}{l} \implies \text{3 Majorana (Neutral) fermions} \\ \psi_1, \frac{1}{\sqrt{2}} \left(\psi_2^0 + \tilde{\psi}_2^0 \right), \frac{1}{\sqrt{2}} \left(\psi_2^0 - \tilde{\psi}_2^0 \right) \\ + \text{1 Dirac (Charged) fermion } \{ \psi_2^+, \tilde{\psi}_2^- \} \end{array}$$

A Singlet-Doublet Realization

$$\mathcal{L} \supset Y \bar{\psi}_1 \left(\frac{v+h}{\sqrt{2}} \right) \psi_2^0 + \tilde{Y} \bar{\psi}_1 \left(\frac{v+h}{\sqrt{2}} \right) \tilde{\psi}_2^0 \\ - m_2 \bar{\psi}_2^0 \tilde{\psi}_2^0 - m_2 \bar{\tilde{\psi}}_2^- \psi_2^+ - \frac{m_1}{2} \bar{\psi}_1 \psi_1 + \mathsf{h.c.}$$

▶ 4 couplings, 3 fields \implies 1 free phase. Choose

$$Y \equiv y e^{i\delta_{CP}/2}, \quad \tilde{Y} \equiv \tilde{y} e^{i\delta_{CP}/2}$$

• Model Parameters $\{m_1, m_2, y, \tilde{y}, \delta_{CP}\}$

12/22

A Singlet-Doublet Realization

$$\mathcal{L} \supset Y \bar{\psi}_1 \left(\frac{v+h}{\sqrt{2}} \right) \psi_2^0 + \tilde{Y} \bar{\psi}_1 \left(\frac{v+h}{\sqrt{2}} \right) \tilde{\psi}_2^0 \\ - m_2 \bar{\psi}_2^0 \tilde{\psi}_2^0 - m_2 \bar{\tilde{\psi}}_2^- \psi_2^+ - \frac{m_1}{2} \bar{\psi}_1 \psi_1 + \mathsf{h.c.}$$

• 4 couplings, 3 fields \implies 1 free phase. Choose

$$Y \equiv y e^{i\delta_{CP}/2}, \quad \tilde{Y} \equiv \tilde{y} e^{i\delta_{CP}/2}$$

- Model Parameters $\{m_1, m_2, y, \tilde{y}, \delta_{CP}\}$
- Singlet Doublet mixing in the neutral sector
- \implies 3 Majorana + 1 Dirac mass eigenstates χ (DM), χ_1 , χ_2 + { ψ_{2c} , $\tilde{\psi}_{2c}$ }

A Doublet-Triplet Realization

•
$$SU(2)_L$$
 Doublet $\psi_2 = \begin{pmatrix} \psi_2^+ \\ \psi_2^0 \end{pmatrix}$, $Y = 1/2$
• $SU(2)_L$ Doublet $\tilde{\psi}_2 = \begin{pmatrix} \tilde{\psi}_2^0 \\ \tilde{\psi}_2^- \end{pmatrix}$, $Y = -1/2$
• $SU(2)_L$ Triplet $\psi_3 = \begin{pmatrix} \psi_3^0/\sqrt{2} & \psi_3^+ \\ \psi_3^- & -\psi_3^0/\sqrt{2} \end{pmatrix}$, $Y = 0$

 $\begin{array}{l} \implies \text{3 Majorana (Neutral) fermions} \\ \psi_3^0, \frac{1}{\sqrt{2}} \left(\psi_2^0 + \tilde{\psi}_2^0 \right), \frac{1}{\sqrt{2}} \left(\psi_2^0 - \tilde{\psi}_2^0 \right) \\ + \text{2 Dirac (Charged) fermions } \{ \psi_2^+, \tilde{\psi}_2^0 - \}, \{ \psi_3^+, \tilde{\psi}_3^- \} \end{array}$

A Doublet-Triplet Realization

$$\begin{split} \mathcal{L} &\supset -Y\bar{\psi}_{3}^{0}\left(\frac{v+h}{2}\right)\psi_{2}^{0}+\tilde{Y}\bar{\psi}_{3}^{0}\left(\frac{v+h}{2}\right)\tilde{\psi}_{2}^{0} \\ &+Y\bar{\psi}_{3}^{-}\left(\frac{v+h}{\sqrt{2}}\right)\psi_{2}^{+}+\tilde{Y}\bar{\psi}_{3}^{+}\left(\frac{v+h}{\sqrt{2}}\right)\tilde{\psi}_{2}^{-} \\ &-m_{2}\bar{\psi}_{2}^{0}\tilde{\psi}_{2}^{0}-m_{2}\bar{\tilde{\psi}}_{2}^{-}\psi_{2}^{+}-\frac{m_{3}}{2}\bar{\psi}_{3}^{0}\psi_{3}^{0}-m_{3}\bar{\psi}_{3}^{+}\psi_{3}^{-}+\text{h.c.} \end{split}$$

• 4 couplings, 3 fields \implies 1 free phase. Choose

$$Y \equiv y e^{i\delta_{CP}/2}, \ \tilde{Y} \equiv \tilde{y} e^{i\delta_{CP}/2}$$

• Model Parameters
$$\{m_2, m_3, y, \tilde{y}, \delta_{CP}\}$$

A Doublet-Triplet Realization

$$\begin{split} \mathcal{L} &\supset -Y\bar{\psi}_{3}^{0}\left(\frac{v+h}{2}\right)\psi_{2}^{0}+\tilde{Y}\bar{\psi}_{3}^{0}\left(\frac{v+h}{2}\right)\tilde{\psi}_{2}^{0} \\ &+Y\bar{\psi}_{3}^{-}\left(\frac{v+h}{\sqrt{2}}\right)\psi_{2}^{+}+\tilde{Y}\bar{\psi}_{3}^{+}\left(\frac{v+h}{\sqrt{2}}\right)\tilde{\psi}_{2}^{-} \\ &-m_{2}\bar{\psi}_{2}^{0}\tilde{\psi}_{2}^{0}-m_{2}\bar{\tilde{\psi}}_{2}^{-}\psi_{2}^{+}-\frac{m_{3}}{2}\bar{\psi}_{3}^{0}\psi_{3}^{0}-m_{3}\bar{\psi}_{3}^{+}\psi_{3}^{-}+\text{h.c.} \end{split}$$

• 4 couplings, 3 fields \implies 1 free phase. Choose

$$Y \equiv y e^{i\delta_{CP}/2}, \quad \tilde{Y} \equiv \tilde{y} e^{i\delta_{CP}/2}$$

- Model Parameters $\{m_2, m_3, y, \tilde{y}, \delta_{CP}\}$
- Doublet-Triplet mixing in both neutral and charged sectors
- $\implies 3 \text{ Majorana + 2 Dirac mass eigenstates} \\ \chi \text{ (DM), } \chi_1, \chi_2 + \{\chi_1^+, \chi_1^-\}, \{\chi_2^+, \chi_2^-\}$

W. Linda Xu

```
more moving parts
```


New particle content :

15/22

more moving parts t more constraints

CP-violation:

EDM measurements

► New particle content :

15/22

"Amount of low-energy gauge-coupled

CP-violation can't be too large"

more moving parts there are a constraints

CP-violation:

EDM measurements

New particle content :

Collider bounds

"New particles have to be heavy or weakly coupled"

"Amount of low-energy gauge-coupled

CP-violation can't be too large"

Constraints from EFT:

more moving parts therefore a constraints

CP-violation:

EDM measurements

New particle content :

Collider bounds

"Amount of low-energy gauge-coupled CP-violation can't be too large"

"New particles have to be heavy or weakly coupled"

Constraints from EFT:

Suitable $\{m_{\chi}, y_{h\chi}, g_{Z\chi}\}$

"Lightest particle must be ~ 60 GeV. $y_{h\chi}$ needs to be small or imaginary. $g_{Z\chi}$ needs to be small."

UV Constraints - CP Violation

UV Constraints – Invisible Decays

 $BR[h \to inv] \le 0.13 \; [95\% \; \mathsf{CL}]$

[ATLAS '20]

W. Linda Xu

UV Constraints - Electroweak Precision

W. Linda Xu

Putting it all together

W. Linda Xu

W. Linda Xu

W. Linda Xu

W. Linda Xu

W. Linda Xu

W. Linda Xu

W. Linda Xu

Putting it all together

Putting it all together

Conclusions

CP-Violating Higgs Portal Dark Matter is a viable model

- Candidate solution to GCE
- Thermal relic
- Respects scattering constraints
- Mass resonance unecessary for imaginary couplings
- Several UV completions are possible; in particular Singlet-Doublet DM is a minimal way to realize this.
 - Viable parameter space for both mass and phase tunings

Thank you!