

Kinetic Field Theory: A comparison between KFT and SPT

Elena Kozlikin

Institute for Theoretical Physics, U. Heidelberg and Fraunhofer FKIE

at Cosmology From Home

Cosmic structure formation

How can we understand cosmic structure formation from first principle?

Kinetic Field Theory in a nutshell

 Non-equilibrium statistics of N correlated classical particles.

The KFT power spectrum

PRELIMINARY, Bartelmann et al. in prep

4 / 1

Theory of cosmic structure formation

In general:

$$\mathbf{Z} = \int \mathcal{D}\varphi \,\mathbf{P}[\varphi]$$

Kinetic Field Theory:

- Z_{KFT} in terms of particles and their trajectories
- Solution to Hamiltonian e.o.m.

$$\begin{split} \vec{q}(t) = & \vec{q}^{(i)} + g_{qp}(t,0) \, \vec{p}^{(i)} \\ & + \int_0^t dt' \, g_{qp}(t,t') \, \vec{f}(t') \end{split}$$

 Derive statistical properties by functional derivatives

Theory of cosmic structure formation

In general:

$$\mathbf{Z} = \int \mathcal{D}\varphi \, \mathbf{P}[\varphi]$$

Kinetic Field Theory:

- Z_{KFT} in terms of particles and their trajectories
- Solution to Hamiltonian e.o.m.

$$\begin{split} \vec{q}(t) = & \vec{q}^{(i)} + g_{qp}(t,0) \, \vec{p}^{(i)} \\ & + \int_0^t dt' \, g_{qp}(t,t') \, \vec{f}(t') \end{split}$$

 Derive statistical properties by functional derivatives

Eulerian SPT:

- Z_{SPT} in terms of averaged fields (velocity and density) and their e.o.m
- Fluid equations:

$$\begin{split} \partial_t \, \rho + \rho \, \theta + v^i \, \partial_i \, \rho &= 0 \\ \partial_t \, \theta + \partial_i \left(v^j \, \partial_j v^i \right) + 4 \pi G \rho &= 0 \end{split}$$

(θ = ∂_iv¹)
Derive statistical properties by functional derivatives

Loss of information in SPT I

• Fluid equations obtained from a finite truncation of Vlasov-Boltzmann hierarchy:

$$\partial_{t}\rho + \partial_{i}\left(\rho \, v^{i}\right) = 0 \tag{1}$$

$$\partial_{t} v^{i} + v^{j} \partial_{j} v^{i} + \partial^{i} \tilde{\phi} + \frac{\partial_{j} \left(\rho \, \sigma^{ij} \right)}{\rho} = 0 \tag{2}$$

$$\nabla^2 \tilde{\phi} = 4\pi \mathbf{G} \,\rho \tag{3}$$

• The truncation means that we neglect all information contained in the higher moments of the phase-space distribution!

Loss of information in SPT II

• To solve the fluid equations, we set the velocity dispersion $\sigma_{ij} = 0$ (single-stream approximation):

$$\begin{split} \partial_t \, \rho &+ \rho \, \theta + v^i \, \partial_i \, \rho = 0 \\ \partial_t \, \theta &+ \partial_i \left(v^j \, \partial_j v^i \right) + 4 \pi G \rho = 0 \end{split}$$

 $(\theta=\partial_i v^i)$

- This assumes that the system is described at every point by a single-valued velocity field.
- This assumption breaks down once streams start to cross! → shell-crossing problem
- Further simplification: $\nabla \times \vec{v} = 0$ initially. But $\sigma_{ij} \neq 0$ could source vorticity.

Information content

Kinetic Field Theory:

■ Z_{KFT} with particle trajectories

$$\begin{split} \vec{q}(t) = & \vec{q}^{(i)} + g_{qp}(t,0) \, \vec{p}^{(i)} \\ & + \int_0^t dt' \, g_{qp}(t,t') \, \vec{f}(t') \end{split}$$

is still exact!

Information content

Kinetic Field Theory:

 Z_{KFT} with particle trajectories

$$\begin{split} \vec{q}(t) = & \vec{q}^{(i)} + g_{qp}(t,0) \, \vec{p}^{(i)} \\ & + \int_0^t dt' \, g_{qp}(t,t') \, \vec{f}(t') \end{split}$$

is still exact!

Eulerian SPT:

 $\blacksquare\ {\rm Z}_{\rm SPT}$ with fluid equations

$$\begin{split} \partial_t \, \rho + \rho \, \theta + v^i \, \partial_i \, \rho &= 0 \\ \partial_t \, \theta + \partial_i \left(v^j \, \partial_j v^i \right) + 4 \pi G \rho &= 0 \\ (\theta &= \partial_i v^i) \end{split}$$

has already lost information!

Comparison of the perturbation theory (PT)

Kinetic Field Theory:

 PT in terms of deviation of particle from inertial trajectories due to interactions.

For

$$\vec{q}(t) = \vec{q}^{(i)} + g_{qp}(t,0) \, \vec{p}^{(i)}$$

 Z_{KFT} is exact.

 Perturbative corrections are due to particle interactions. Comparison of the perturbation theory (PT)

Kinetic Field Theory:

 PT in terms of deviation of particle from inertial trajectories due to interactions.

For

$$\vec{q}(t) = \vec{q}^{(i)} + g_{qp}(t,0)\,\vec{p}^{(i)}$$

 Z_{KFT} is exact.

 Perturbative corrections are due to particle interactions.

Eulerian SPT:

- PT is not in terms of the interaction potential.
- Linear theory describes the independent evolution of Fourier field modes.
- Perturbative corrections arise due coupling of the field modes by non-linear advective terms.
- By construction even linear theory is not exact.

Comparison of the perturbation theory (PT)

Kinetic Field Theory:

 PT in terms of deviation of particle from inertial trajectories due to interactions.

For

$$\vec{q}(t) = \vec{q}^{(i)} + g_{qp}(t,0)\,\vec{p}^{(i)}$$

 Z_{KFT} is exact.

 Perturbative corrections are due to particle interactions.

Eulerian SPT:

- PT is not in terms of the interaction potential.
- Linear theory describes the independent evolution of Fourier field modes.
- Perturbative corrections arise due coupling of the field modes by non-linear advective terms.
- By construction even linear theory is not exact.
- $\rightarrow\,$ Direct comparison of perturbative expansion for KFT and SPT difficult.

- Expanding the KFT density power spectrum to 2nd order in Pⁱⁿⁱ_δ gives the one-loop result of SPT.
- \rightarrow By construction, KFT represents a complete resummation of the SPT perturbation series in the advective kinematics in the free-streaming regime.
- \rightarrow The free-streaming regime of KFT presents a better starting point for a perturbative treatment.

- Expanding the KFT density power spectrum to 2nd order in Pⁱⁿⁱ_δ gives the one-loop result of SPT.
- $\rightarrow\,$ By construction, KFT represents a complete resummation of the SPT perturbation series in the advective kinematics in the free-streaming regime.
- $\rightarrow\,$ The free-streaming regime of KFT presents a better starting point for a perturbative treatment.

- Expanding the KFT density power spectrum to 2nd order in Pⁱⁿⁱ_δ gives the one-loop result of SPT.
- $\rightarrow\,$ By construction, KFT represents a complete resummation of the SPT perturbation series in the advective kinematics in the free-streaming regime.
- $\rightarrow\,$ The free-streaming regime of KFT presents a better starting point for a perturbative treatment.

KFT: exact free evolution

PRELIMINARY, E. Kozlikin et al. in prep

1
loop SPT: recovered from KFT to 2nd order in $\mathbf{P}^{\mathrm{ini}}_{\delta}$

PRELIMINARY, E. Kozlikin et al. in prep

Transient bahaviour

PRELIMINARY, E. Kozlikin et al. in prep

Indicates shell-crossing.

Parameter free, analytic description of non-linear structure formation.

- Successful far into the non-linear regime of structure formation.
- Does not require model assumptions on halo profiles and halo mass functions.
- Gain understanding of LSS formation on a fundamental particle-level.
- The free-streaming regime of KFT is exact \rightarrow A better starting point for a perturbative treatment.

- Parameter free, analytic description of non-linear structure formation.
- Successful far into the non-linear regime of structure formation.
- Does not require model assumptions on halo profiles and halo mass functions.
- Gain understanding of LSS formation on a fundamental particle-level.
- The free-streaming regime of KFT is exact \rightarrow A better starting point for a perturbative treatment.

- Parameter free, analytic description of non-linear structure formation.
- Successful far into the non-linear regime of structure formation.
- Does not require model assumptions on halo profiles and halo mass functions.
- Gain understanding of LSS formation on a fundamental particle-level.
- The free-streaming regime of KFT is exact \rightarrow A better starting point for a perturbative treatment.

- Parameter free, analytic description of non-linear structure formation.
- Successful far into the non-linear regime of structure formation.
- Does not require model assumptions on halo profiles and halo mass functions.
- Gain understanding of LSS formation on a fundamental particle-level.
- The free-streaming regime of KFT is exact → A better starting point for a perturbative treatment.

- Parameter free, analytic description of non-linear structure formation.
- Successful far into the non-linear regime of structure formation.
- Does not require model assumptions on halo profiles and halo mass functions.
- Gain understanding of LSS formation on a fundamental particle-level.
- The free-streaming regime of KFT is exact → A better starting point for a perturbative treatment.