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Cosmic structure formation
How can we understand cosmic structure formation from first principle?
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Kinetic Field Theory in a nutshell

Non-equilibrium statistics of N
correlated classical particles.

Z[J] =
∫

dq dp P(q,p)︸ ︷︷ ︸
initial

conditions

e

dynamics︷ ︸︸ ︷
i
∫

dt′〈J, x̄〉

density-fluctuation power spectrum:

Pδ(k, a) ∝ ρ̂(1) ρ̂(2)Z[J]
∣∣∣
J=0

position q

time t

momentum p

trajectories
(p, q)(t)
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The KFT power spectrum
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Theory of cosmic structure formation
In general:

Z =

∫
DϕP[ϕ]

Kinetic Field Theory:
ZKFT in terms of particles
and their trajectories
Solution to Hamiltonian
e.o.m.

~q(t) =~q(i) + gqp(t, 0)~p(i)

+

∫ t

0
dt′ gqp(t, t′)~f(t′)

Derive statistical properties
by functional derivatives
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∫ t

0
dt′ gqp(t, t′)~f(t′)

Derive statistical properties
by functional derivatives

Eulerian SPT:
ZSPT in terms of averaged
fields (velocity and density)
and their e.o.m
Fluid equations:

∂t ρ+ ρ θ + vi ∂i ρ = 0

∂t θ + ∂i
(
vj ∂jvi)+ 4πGρ = 0

(θ = ∂ivi)
Derive statistical properties by
functional derivatives

Elena Kozlikin 5 / 1



Loss of information in SPT I

Fluid equations obtained from a finite truncation of
Vlasov-Boltzmann hierarchy:

∂tρ+ ∂i
(
ρ vi) = 0 (1)

∂tvi + vj ∂jvi + ∂iφ̃+
∂j
(
ρ σij)
ρ

= 0 (2)

∇2φ̃ = 4πG ρ (3)

The truncation means that we neglect all information
contained in the higher moments of the phase-space
distribution!
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Loss of information in SPT II

To solve the fluid equations, we set the velocity dispersion
σij = 0 (single-stream approximation):

∂t ρ+ ρ θ + vi ∂i ρ = 0

∂t θ + ∂i
(
vj ∂jvi)+ 4πGρ = 0

(θ = ∂ivi)
This assumes that the system is described at every point
by a single-valued velocity field.
This assumption breaks down once streams start to cross!
→ shell-crossing problem
Further simplification: ∇× ~v = 0 initially. But σij 6= 0
could source vorticity.

Elena Kozlikin 7 / 1



Information content

Kinetic Field Theory:
ZKFT with particle
trajectories

~q(t) =~q(i) + gqp(t, 0)~p(i)

+

∫ t

0
dt′ gqp(t, t′)~f(t′)

is still exact!
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ZKFT with particle
trajectories

~q(t) =~q(i) + gqp(t, 0)~p(i)

+

∫ t

0
dt′ gqp(t, t′)~f(t′)

is still exact!

Eulerian SPT:
ZSPT with fluid equations

∂t ρ+ ρ θ + vi ∂i ρ = 0

∂t θ + ∂i
(
vj ∂jvi)+ 4πGρ = 0

(θ = ∂ivi)

has already lost information!
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Comparison of the perturbation theory (PT)

Kinetic Field Theory:
PT in terms of deviation of
particle from inertial
trajectories due to
interactions.
For

~q(t) = ~q(i) + gqp(t, 0)~p(i)

ZKFT is exact.
Perturbative corrections are
due to particle interactions.
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trajectories due to
interactions.
For

~q(t) = ~q(i) + gqp(t, 0)~p(i)

ZKFT is exact.
Perturbative corrections are
due to particle interactions.

Eulerian SPT:
PT is not in terms of the
interaction potential.
Linear theory describes the
independent evolution of
Fourier field modes.
Perturbative corrections arise
due coupling of the field modes
by non-linear advective terms.
By construction even linear
theory is not exact.

→ Direct comparison of perturbative expansion for KFT and
SPT difficult.
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Comparison in the free-streaming regime

Expanding the KFT density power spectrum to 2nd order
in Pini

δ gives the one-loop result of SPT.
→ By construction, KFT represents a complete resummation

of the SPT perturbation series in the advective kinematics
in the free-streaming regime.

→ The free-streaming regime of KFT presents a better
starting point for a perturbative treatment.
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Comparison in the free-streaming regime

KFT: exact free evolution
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1loop SPT: recovered from KFT to
2nd order in Pini

δ
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Transient bahaviour
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Indicates shell-crossing.
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Summary

Parameter free, analytic description of non-linear structure
formation.
Successful far into the non-linear regime of structure
formation.
Does not require model assumptions on halo profiles and
halo mass functions.
Gain understanding of LSS formation on a fundamental
particle-level.
The free-streaming regime of KFT is exact → A better
starting point for a perturbative treatment.
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