# The Caustic Skeleton of the Cosmic Web

Job Feldbrugge Perimeter Institute Carnegie Mellon University

Caustic Skeleton & Cosmic Web, JCAP, Issue 05, 2018

Collaborators: R. van de Weygaert, J. Hidding, J. Feldbrugge

#### Cosmic Web





Millennium simulation

SDSS redshift survey

#### Arnol'd et al.

- Vladimir Arnol'd extended René Thom classification of stable degenerate critical points to Lagrangian catastrophe theory
- The classification of caustics was applied to large-scale structure formation to predict the geometric structure of the cosmic web

1972 NORMAL FORMS FOR FUNCTIONS NEAR DEGENERATE CRITICAL POINTS, THE WEYL GROUPS OF Ak, Dk, Ek AND LAGRANGIAN SINGULARITIES

#### V. I. Arnol'd

1980 EVOLUTION OF SINGULARITIES OF POTENTIAL FLOWS IN COLLISION-FREE MEDIA AND THE METAMORPHOSIS OF CAUSTICS IN THREE-DIMENSIONAL SPACE

V. I. Arnol'd

#### 1982 The Large Scale Structure of the Universe I. General Properties. Oneand Two-Dimensional Models

V. I. ARNOLD

Moscow State University, U.S.S.R.

and

S. F. SHANDARIN and YA. B. ZELDOVICH Institute of Applied Mathematics, Moscow, U.S.S.R.

(Received August 11, 1981)

## The classification of caustics

| Singularity | Singularity           | Feature in the   | Feature in the   |
|-------------|-----------------------|------------------|------------------|
| class       | name                  | 2D cosmic web    | 3D cosmic web    |
| $A_2$       | fold                  | collapsed region | collapsed region |
| $A_3$       | $\operatorname{cusp}$ | filament         | wall or membrane |
| $A_4$       | swallow tail          | cluster or knot  | filament         |
| $A_5$       | butterfly             | not stable       | cluster or knot  |
|             |                       |                  |                  |
| $D_4$       | hyperbolic/elliptic   | cluster or knot  | filament         |
| $D_5$       | parabolic             | not stable       | cluster or knot  |

The identification of the different caustics in the 2- and 3-dimensional cosmic web

## Lagrangian fluid dynamics

- Describe the deformation of the fluid
- The density spikes at the caustics

The density spikes at the caustics  

$$s_{t}(q) = x_{t}(q) - q$$

$$\mathcal{M} = \frac{\partial s_{t}}{\partial q} = \begin{pmatrix} M_{1,1} & M_{2,1} & M_{3,1} \\ M_{1,2} & M_{2,2} & M_{3,2} \\ M_{1,3} & M_{2,3} & M_{3,3} \end{pmatrix} \xrightarrow{\alpha_{M_{1}}} \begin{pmatrix} \alpha_{M_{1}} & \alpha_{M_{2}} & \alpha_{M_{2}} \\ \alpha_{M_{1,3}} & M_{2,3} & M_{3,3} \end{pmatrix} \xrightarrow{\alpha_{M_{2}}} \begin{pmatrix} \alpha_{M_{1}} & \alpha_{M_{2}} & \alpha_{M_{2}} \\ \alpha_{M_{1,3}} & \alpha_{M_{2,3}} & \alpha_{M_{3,3}} \end{pmatrix} \xrightarrow{\alpha_{M_{2}}} \begin{pmatrix} \alpha_{M_{1}} & \alpha_{M_{2}} & \alpha_{M_{2}} \\ \alpha_{M_{1,3}} & \alpha_{M_{2,3}} & \alpha_{M_{3,3}} \end{pmatrix} \xrightarrow{\alpha_{M_{2}}} \begin{pmatrix} \alpha_{M_{1}} & \alpha_{M_{2}} & \alpha_{M_{2}} \\ \alpha_{M_{1,3}} & \alpha_{M_{2,3}} & \alpha_{M_{3,3}} \end{pmatrix} \xrightarrow{\alpha_{M_{2}}} \begin{pmatrix} \alpha_{M_{1}} & \alpha_{M_{2}} & \alpha_{M_{2}} \\ \alpha_{M_{1,3}} & \alpha_{M_{2,3}} & \alpha_{M_{3,3}} \end{pmatrix} \xrightarrow{\alpha_{M_{2}}} \begin{pmatrix} \alpha_{M_{1,3}} & \alpha_{M_{2}} & \alpha_{M_{2}} \\ \alpha_{M_{1,3}} & \alpha_{M_{2,3}} & \alpha_{M_{3,3}} \end{pmatrix} \xrightarrow{\alpha_{M_{2}}} \begin{pmatrix} \alpha_{M_{1,3}} & \alpha_{M_{2}} & \alpha_{M_{2}} \\ \alpha_{M_{1,3}} & \alpha_{M_{2,3}} & \alpha_{M_{3,3}} \end{pmatrix} \xrightarrow{\alpha_{M_{2}}} \begin{pmatrix} \alpha_{M_{1,3}} & \alpha_{M_{2}} & \alpha_{M_{2}} \\ \alpha_{M_{2}} & \alpha_{M_{2}} & \alpha_{M_{2}} \end{pmatrix} \xrightarrow{\alpha_{M_{2}}} \begin{pmatrix} \alpha_{M_{1,3}} & \alpha_{M_{2}} & \alpha_{M_{2}} \\ \alpha_{M_{2}} & \alpha_{M_{2}} & \alpha_{M_{2}} \end{pmatrix} \xrightarrow{\alpha_{M_{2}}} \begin{pmatrix} \alpha_{M_{2}} & \alpha_{M_{2}} & \alpha_{M_{2}} \\ \alpha_{M_{2}} & \alpha_{M_{2}} & \alpha_{M_{2}} & \alpha_{M_{2}} \end{pmatrix} \xrightarrow{\alpha_{M_{2}}} \begin{pmatrix} \alpha_{M_{2}} & \alpha_{M_{2}} & \alpha_{M_{2}} & \alpha_{M_{2}} \\ \alpha_{M_{2}} & \alpha_{M_{2}} & \alpha_{M_{2}} & \alpha_{M_{2}} & \alpha_{M_{2}} & \alpha_{M_{2}} \end{pmatrix} \xrightarrow{\alpha_{M_{2}}} \begin{pmatrix} \alpha_{M_{2}} & \alpha_{M_{2}} &$$

dS

#### Shell-crossing condition $q_2$ $x_2$ $x_t(q')$ • $x_t(q_s)$ • $x_t(q'')$ $x_t(C$ $q_1$ $\rightarrow x_1$

**Theorem:** A manifold  $M \subset L$  forms a singularity under the mapping  $x_t$  in the point  $x_t(q_s) \in x_t(M) \subset E$  at time t, meaning that  $x_t(M)$  is not smooth in  $x_t(q_s)$ , if and only if there exists at least one nonzero tangent vector  $T \in T_{q_s}M$  satisfying

 $(1+\mu_{it}(q_s))v_{it}^*(q_s)\cdot T=0$ 

for all i = 1, 2, ..., dim(L).

## Caustic conditions

Iterative application of the shell-crossing condition

$$(1+\mu_{it}(q_s))v_{it}^*(q_s)\cdot T=0$$

leads to the caustic conditions on both the eigenvalue and eigenvector fields:

Fold:  

$$\begin{aligned}
A_{2}^{i}(t) &= \{\mathbf{q} \in L \mid 1 + \mu_{it}(\mathbf{q}) = 0\} \\
\text{Cusp:} &\quad A_{3}^{i}(t) = \{\mathbf{q} \in L \mid \mathbf{q} \in A_{2}^{i}(t), \mathbf{v}_{i} \cdot \nabla \mu_{it} = 0\} \\
\text{Swallowtail:} &\quad A_{4}^{i}(t) = \{\mathbf{q} \in L \mid \mathbf{q} \in A_{3}^{i}(t), \mathbf{v}_{i} \cdot \nabla(\mathbf{v}_{i} \cdot \nabla \mu_{it}) = 0\} \\
\text{Butterfly:} &\quad A_{5}^{i}(t) = \{\mathbf{q} \in L \mid \mathbf{q} \in A_{4}^{i}(t), \mathbf{v}_{i} \cdot \nabla(\mathbf{v}_{i} \cdot \nabla(\mathbf{v}_{i} \cdot \nabla \mu_{it})) = 0\} \\
\text{Umbilic:} &\quad D_{4}^{ij}(t) = \{\mathbf{q} \in L \mid 1 + \mu_{it}(\mathbf{q}) = 1 + \mu_{jt}(\mathbf{q}) = 0\} \\
\text{Parabolic:} &\quad D_{5}^{ij}(t) = \{\mathbf{q} \in L \mid \mathbf{q} \in D_{4}^{ij}(t), \mathbf{v}_{i} \cdot \nabla \mu_{i} = \mathbf{v}_{j} \cdot \nabla \mu_{j} = 0\}
\end{aligned}$$

Morse-Smale theory of full deformation tensor field. No free parameters!



### Second eigenvalue



**q**2



## Second eigenvalue



**q**2

q2



## Second eigenvalue



## Zel'dovich flow





## Zel'dovich flow





## Zel'dovich flow





## Scotch flow





### Scotch flow





#### Scotch flow







## Eulerian space



g2

















## Eulerian space



91







## Fold and cusp caustic



Applied to the Zel'dovich approximation, we obtain the **caustic skeleton** in terms of the initial conditions

$$s_t(q) = x_t(q) - q$$
$$s_t(q) = -b_+(t)\nabla_q \Psi(q)$$
$$\Psi(q) = \frac{2}{3\Omega_0 H_0^2} \phi_0(q)$$



Cusp sheets – walls

The cusp walls correspond to only one eigenvalue field



Swallowtail line – filament Elliptic/hyperbolic – filament

The swallowtail filaments correspond to only one eigenvalue field



Butterfly – cluster Parabolic – cluster

The butterfly clusters correspond to only one eigenvalue field



The caustic skeleton accurately follows the largescale geometry of the N-body simulation.



## The evolving Cosmic skeleton



The accuracy of the caustic skeleton can be studied in more detail by comparing it with dark matter Nbody simulations.

The flip-flop field of 3D N-body simulation used by the comparison project Libeskind et al. (2018)

Abel, Oliver, Ralf (2012), Shandarin, Medvedev (2016, 2017)



Gaussian smoothing of initial conditions:

 $\sigma = 0.78 \ h^{-1} Mpc$ 



Gaussian smoothing of initial conditions:

 $\sigma = 1.6 \ h^{-1} Mpc$ 



Gaussian smoothing of initial conditions:

 $\sigma = 3.1 \ h^{-1} Mpc$ 



## Summary

- Shell-crossing condition enables us to derive caustic conditions in 3D
- Caustic skeleton of cosmic web depends on the eigenvalue and eigenvector fields
- Filaments and walls do not require multiple shell-crossings
- Two types of filaments
- Caustic skeleton closely resembles N-body simulations without free parameters
- What are the statistical properties of the skeleton in comparison to N-body?
- Caustic web of the local universe with constraint simulations.





