Spherical Harmonic Tomography for Emission Line Galaxy Surveys

Henry S. Grasshorn Gebhardt
Penn State, now at JPL

August 2020 Cosmology from Home

Outline

- Motivation for Spherical Harmonic Tomography (SHT)
- 2-FAST: Projecting to SHT
- Redshift-Space SHT
- Conclusion

The power spectrum contains lots of cosmological information!

- Baryon acoustic oscillations (BAO) \rightarrow Distances!
- Alcock-Paczynski test \rightarrow Distances!
- Growth of structure
\rightarrow Test modified gravity
- Non-Gaussianity

$$
\begin{aligned}
& \delta(\mathbf{x})=\frac{\rho(\mathbf{x})-\bar{\rho}}{\bar{\rho}} \\
& P(k) \propto\langle | \delta_{k}^{2}| \rangle
\end{aligned}
$$

Advantages of Spherical Harmonic Space

- Natural coordinate system for observer position and radial/angular separation
- Redshift evolution (e.g. Volume effects, growth of structure, evolution of luminosity function)
- Lensing: Light from high-redshift galaxies must pass through matter distribution associated with low-redshift galaxies.
\rightarrow SHT is straightforward for modeling this.

Spherical Harmonic Space

Challenges with Spherical Harmonic Tomography

- Data: Complex spherical transform \rightarrow HEALPix

$$
a_{\ell m}(z)=\int d^{2} \hat{s} Y_{\ell m}^{*}(\hat{s}) \delta(\vec{s})
$$

- Theory: Need to integrate highly oscillatory functions \rightarrow 2-FAST algorithm

$$
C_{\ell}\left(z, z^{\prime}\right)=\frac{2}{\pi} \int d k k^{2} P(k) j_{\ell}(k r) j_{\ell}\left(k r^{\prime}\right)
$$

- Non-diagonal covariance matrix
- Non-linear effects can bleed into the measurement on all scales

Spherical Harmonic projection;s was hard!

$$
C_{\ell}\left(r, r^{\prime}\right) \simeq \frac{2}{\pi} \int_{0}^{\infty} \mathrm{d} k k^{2} P(k) j_{\ell}(k r) j_{\ell}\left(k r^{\prime}\right)
$$

- Spherical Bessel functions are highly oscillatory

2-FAST: an algorithm for projecting the 2point function into spherical harmonic space

2-point function from Fast and $\underline{A c c u r a t e}$ Spherical Bessel Transform

$$
C_{\ell}\left(r, r^{\prime}\right) \simeq \frac{2}{\pi} \int_{0}^{\infty} d k k^{2} P(k) j_{\ell}(k r) j_{\ell}\left(k r^{\prime}\right)
$$

2-FAST allows us to efficiently calculate spherical harmonic projection with linear Kaiser effect.
... but may also be useful for perturbation theory!

2-FAST is a spectral method

A spectral method:

- Integral becomes convolution in logarithmic space.
- Convolution in real space is multiplication in Fourier space

1) Fast Fourier Transform (FFT) power spectrum $P(k)$
2) Multiply with Fourier kernel
3) Inverse Fast Fourier Transform $\rightarrow C_{\ell}$

- Need Fourier kernel, calculated using Miller's algorithm.

Miller's algorithm

- Recurrence relation: $j_{\ell-1}(x)-\frac{2 \ell+1}{x} j_{\ell}(x)+j_{\ell+1}(x)=0$
\rightarrow Unstable in the $\ell \rightarrow \ell+1$ direction
Relative Error in $M_{\ell \ell^{\prime}}(R=0.9, m=500, q=1.0, \Delta \ell=4)$
- Error dies out as we go from $\ell \rightarrow \ell-1$
- Match to analytical solution at $\ell=0$.

More Spherical Harmonic Problems to Solve: Projecting non-linear terms

- 2-FAST calculates $C_{t}\left(r, r^{\prime}\right)$ with linear Kaiser effect.
- Non-linear terms in $\mathrm{P}(\mathrm{k}) \rightarrow$ Integral diverges!
\rightarrow Fingers of God (FoG): Bang!
\rightarrow Non-linear Kaiser: Bang!

$$
C_{\ell}\left(r, r^{\prime}\right) \simeq \frac{2}{\pi} \int_{0}^{\infty} \mathrm{d} k k^{2} P(k) j_{\ell}(k r) j_{\ell}\left(k r^{\prime}\right)
$$

- Solution:
\rightarrow FoG result in 2D convolution of $C_{t}\left(r, r^{\prime}\right)$ with, e.g., Gaussian
\rightarrow Non-linear Kaiser can be calculated as derivatives on the window function.

Calculating $\mathrm{C}_{e}\left(\mathbf{z}, \mathbf{z}^{\prime}\right)$

- Projection:

$$
\mathrm{P}\left(\mathrm{k}_{\perp}, \mathrm{k}_{\|}\right) \rightarrow \mathrm{C}_{\ell}\left(\mathrm{z}, \mathrm{z}^{\prime}\right)
$$

Spherical harmonic Space: $C_{\ell}\left(r_{\text {mid }}, \Delta r\right)$

- Real space, no BAO

$\mathrm{C}_{\ell}\left(\mathrm{r}_{\text {mid }}, \Delta \mathrm{r}\right)$

- Real space
+ BAO

The Kaiser Effect

- Galaxies tend to move towards overdensities.
\rightarrow Increased clustering along the line of sight direction.

$\mathrm{C}_{\ell}\left(\mathrm{r}_{\text {mid }}, \Delta \mathrm{r}\right)$

- Real space
+ BAO
+ Linear Kaiser: coherent inflow into galaxy clusters

Fingers of God

- Stochastic motions of galaxies
\rightarrow Suppression of clustering in line of sight direction.

$\mathrm{C}_{\ell}\left(\mathrm{r}_{\text {mid }}, \Delta \mathrm{r}\right)$

- Real space
+ BAO
+ Linear Kaiser: coherent inflow into galaxy clusters
+ Fingers of God (FoG) blur our vision!
\rightarrow Redshift space

Trilobite? Rib cage?

$$
\frac{\partial j_{\ell}(k r)}{\partial(k r)} \simeq-\frac{\partial j_{\ell}(k r)}{\partial \ell}
$$

Non-linear effects bleed into all transverse scales

- FoG lead to suppression on all transverse scales
- FoG is less for thicker bins

Comparison with Log-normal Simulation

Grasshorn Gebhardt \& Jeong, in prep

Conclusion and Future Outlook

- Spherical Harmonic (SH) projection cleanly separates radial and angular effects
- SH projection is 2-FAST
- Fingers-of-God and non-linear Kaiser can be done in spherical harmonic space
- Thin bins lead to non-linear effects

