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Inflation: Successes and Predictions

Solve horizon & flatness
problems

Explain fluctuations as
stretched quantum
mechanical perturbations

Predict a nearly scale
invariant spectrum (of
tunable amplitude)

Predict almost Gaussian
perturbations

Spectral index is
5� away from flat
Spectral index
running is small
|fNL| . O(1)
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Hints from the sky
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Reheating
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Figure 1: Each figure shows the evolution of the comoving horizon distance over time.
Each figure shows the extreme cases for wre: the first figure for wre = 1 and the second for
wre = �1

3 .

If one assumes a constant equation of state, the change in the scale factor during reheating is
easily related to the change in the energy density. Using � / a�3(1+w), the reheating epoch
is described by

�end

�re
=

✓
aend

are

◆�3(1+wre)

, (2.1)

where the subscript end refers to the end of inflation (the start of reheating), and re refers
to the end of reheating. Writing this in terms of e-foldings

Nre =
1

3(1 + wre)
ln

✓
�end

�re

◆
=

1

3(1 + wre)
ln

✓
3

2

Vend

�re

◆
, (2.2)

where the last step of (2.2) is obtained by replacing �end = (3/2)Vend, derived by setting
w = �1/3 at the end of inflation.
The temperature is related to the density by

�re =
⇡2

30
greT

4
re, (2.3)

where gre is the number of relativistic species at the end of reheating. Combining Eqs. (2.2)
and (2.3) one finds

Nre =
1

3(1 + w)
ln

�
30 · 3

2Vend

⇡2greT 4
re

�
. (2.4)

Making the standard assumption that entropy is conserved between the end of reheating
and today, one can relate the reheating temperature to the temperature today by taking
into account the changing number of helicity states in the radiation gas as a function of
temperature,

Tre = T0

✓
a0

are

◆ ✓
43

11gre

◆ 1
3

= T0

✓
a0

aeq

◆
eNRD

✓
43

11gre

◆ 1
3

, (2.5)
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Cook et al. 2015
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Figure 2: Plots of Nre and Tre, the length of reheating and the temperature at the end
of reheating respectively, for polynomial potentials with exponent �. The solid red line
corresponds to wre = �1/3, the dashed green line to wre = 0, the dotted blue line to
wre = 2/3, and the dot-dashed black line to wre = 1. The pink shaded region corresponds to
the 1� bounds on ns from Planck. The purple shaded region corresponds to the 1� bounds of
a further CMB experiment with sensitivity ±10�3 [83, 84], using the same central ns value as
Planck. Temperatures below the dark green shaded region are ruled out by BBN. The light
green shaded region is below the electroweak scale, assumed 100 GeV for reference. This
region is not disallowed but would be interesting in the context of baryogenesis.

considering the 2� bounds on ns
6.

Instantaneous reheating is defined as the limit Nre ! 0, visualized in the figure as the point
where all the lines converge. Such instantaneous reheating leads to the maximum temperature
at the end of reheating, and the equation of state parameter is irrelevant.
(Thus, while not shown, a wre = 1

3 solution would correspond to a vertical line passing
through the instantaneous reheat point.)

From Fig. 2, � = 2/3 can be consistent with Planck bounds, but assuming an equation
of state wre � 0, the model would tend to predict smaller reheating temperatures if one
considers Planck’s 1� bound on ns; using Planck’s 2� bounds, any reheating temperature up

6An exception where �4 may still be viable is in the context of warm inflation [85, 86].
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The reheating history connects the times
of horizon exit & re-entry of perturbations
) shifts CMB observables

“The value of N⇤ is not well constrained

and depends on unknown details of

reheating”

CMB-S4 Science Book, 2016
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Hints from the sky
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Mon-minimal coupling & Conformal Transformations

Non-minimal coupling to gravity: L ⇢ ⇠�2R

S
Jordan

=

Z
d4x

p
�g̃


f (�I )R̃ � 1

2
G̃IJ g̃

µ⌫@µ�I@⌫�
J � Ṽ (�I )

�

gµ⌫(x) =
2

M2
Pl

f (�I (x)) g̃µ⌫(x)

S
Einstein

=

Z
d4x
p�g


M2

Pl

2
R � 1

2
GIJg

µ⌫@µ�I@⌫�
J � V (�I )

�

V (�I ) =
M4

Pl

4f 2(�I )
Ṽ (�I )
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Jordan vs Einstein

f (�, �) =
1
2

⇥
M2

Pl + ⇠��2 + ⇠��2⇤ , V (�, �) =
��

4
�4+

��

4
�4+

g

2
�2�2

V (�I )! M2
Pl

4
�I

⇠I
) H =

MPlp
12

s
�

⇠2
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Einstein-frame Field-space

In the Einstein frame, the field-space manifold is curved:

GIJ(�
K ) =

✓
M2

Pl

2f (�K )

◆ 
�IJ +

3
f (�K )

f,I f,J

�
6= F (�K )�IJ

�I : coordinates in field space  ! xµ

GIJ

⇣
⇠ 1

�2

⌘
: metric on field space  ! gµ⌫ (Note: GIJ / ��2)

DJA
I = @JAI + �I

JKA
K

We can “turn off” the potential
and visualize the effects of the
field-space metric alone.

D.I. Kaiser. E.A. Mazenc & E.I.S., PRD 2013Evangelos Sfakianakis Field-space Effects in Preheating 8/21



Inflation and multiple fields

Only one scalar field at high energies is rather unlikely.

How do these models, L ⇢ ⇠�2R , cope with many scalar fields?

Easther, Frazer, Peiris, Price

Multi-field quadratic
model V =

P
m2

I �
2
I

Simple models shift
predictions for ns .

Kaiser & EIS 2014

Non-minimal couplings lead to
strong single-field attractors

Robust Starobinsky-like predictions

ns ' 1� 2
N
' 0.96... , r ' 12

N2 = O(10�3)
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Equations of motion

Background fields:

Dt �̇
I + 3H�̇I + GIKV,K = 0

where DtA
I ⌘ ȦI for our choice of variables

Fluctuations:

Q̈ I
k + 3HQ̇ I

k +


k2

a2 �IJ + MI
J

�
Q I

k = 0

where

MI
J = GIKDJDKV�RI

LMJ �̇
L�̇M� 1

M2
Pla

3 Dt

✓
a3

H
�̇I �̇J

◆
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Quantizing the fluctuations

For motion along the single-field attractor,
quantization is simple

Q̂�(xµ) =
p

G�� a(t)

Z
d3k

(2⇡)3/2

h⇣
vk b̂

k

⌘
e ik·x + c .c .

i

Q̂�(xµ) =
pG�� a(t)

Z
d3k

(2⇡)3/2

h
(zk ĉ

k

) e ik·x + c .c .
i

Re-write as a harmonic oscillator

v 00
k + ⌦2

(�)(k , ⌧) vk ' 0 , vk  ! ��k

z 00
k + ⌦2

(�)(k , ⌧) zk ' 0 , zk  ! ��k
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Effective Mass-squared: Ingredients

@2
⌧ vk + (k2 + a2m2

eff,�)vk = 0 , @2
⌧ zk + (k2 + a2m2

eff,�)zk = 0

m2
eff,I = m2

1,I + m2
2,I + m3

3,I + m2
4,I

m2
1,� ⌘ G�K (D�DKV )  ! potential gradient

m2
2,� ⌘ �R�

LM�'̇L'̇M  ! non-trivial field-space manifold

m3
3,� ⌘ � ��

I �
J
�

M2
Pl

a3 Dt

✓
a3

H
'̇I '̇J

◆
 ! coupled metric perturbations

m2
4,� ⌘ � 1

6
R  ! changes in the background spacetime
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Effective Mass-squared for � fluctuations

⇠ = 0.1⌧ 1 ⇠ = 10

���×��� ���×��� ���×��� ���×��� ���×���
�

���

����

����

����

����

����

�����χ�/��

������ ������ ������ ������ �

����

����

����

����

�����χ�/��

m2
eff

⇡ m2
1 + m2

2 + m3
3

m2
eff

⇡ potential + fieldspace + metric
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Effective Mass-squared for ⇠ = 100� 1

An “unusual" way for adiabaticity violation when R spikes.

������ ������ ������ ������ ������ ������ �

�����

������

������

������

������

������
�����χ�/��

We define

A(k , ⌧) ⌘ ⌦0(k , ⌧)

⌦2(k , ⌧)

where

⌦2(k , ⌧) = k2 + a2m2
eff,�(⌧)

Adiabaticity is violated for ⌦0 � ⌦2, rather than ⌦ ⇡ 0.

A broad range of wavenumbers is excited k . ⇠�Hend
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Floquet charts

⇠ = 0 ⇠ = 10 ⇠ = 100

Efficient particle production
can lead to nonlinear effects )

Need for
lattice simulations

Evangelos Sfakianakis Field-space Effects in Preheating 15/21



Lattice results: Benchmark Case

Linear ξϕ=10

Lattice ξϕ=10
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Lattice results: Parameter Scan
26
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FIG. 8: Equation of state for Case B (symmetric couplings, top left), Case C (negative ellipticity, top
right), Case D (positive ellipticity, bottom left) and Case E (zero ellipticity, bottom right). Color coding as
in Fig. 3. The averaging window is always the period of the �-field. For Case D, the lattice-averaged value

of the �-field becomes larger than the �-field for some values of ⇠�. The rapid oscillations of w for
⇠� = 85, 100 can be removed by switching to an integration window corresponding to the oscillations of h�i

once h�i dominates over h�i.

a late increase in w after N = 3 e-folds, whereas for ⇠� = 55 the equation of state exhibits a

temporary local maximum at N ' 2 and then exceeds w = 1/3 at N ' 3. This behavior can be

easily understood by considering the field variances for these values of ⇠�, as shown in Fig. 9.

For both ⇠� = 40, 55 we see an early period of amplification of the � field driven by the field-space

curvature (Riemann) term m2,� in the e�ective mass. This resonance is too weak to completely

preheat the universe and eventually shuts o�. At later times, after the Riemann contribution has

redshifted to become a subdominant contribution to me�,�, a period of ordinary (potential-driven)

parametric resonance drives a significant transfer of energy from the inflaton into higher-momentum

� modes. This causes the late-time peak in the equation of state. In the case ⇠� = 55 the initial

resonance at N ' 1.5 is strong enough to drain su�cient energy from the inflaton condensate and

drive a local peak in the equation of state. It is interesting to note that the late-time parametric

resonance occurs in the � field. This two-stage parametric resonance process is similar to that

found above for the benchmark Case A for ⇠� ⇠ 25 (see Section III B 2).

ξ ξ> φχ
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Strong resonance and single-field motion

29
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FIG. 11: Left: The lattice-averaged fields and corresponding RMS values versus e-folds after the end of
inflation for Case D (positive ellipticity) with ⇠� = 85. We have used interpolation between the peaks of
h�i (blue), h�i (orange), �rms (red), and �rms (black). Right: The lattice-averaged motion in the � � �
plane between 1.3 and 2.7 e-folds after the end of inflation. Later times correspond to redder colors.

First, we note that the power spectra of the � and � fields have “equlibrated” (akin to the

spectra shown in Fig. 6) prior to the time when h�i dominates over h�i, hence no information

can be transmitted coherently from subhorizon to superhorizon scales. (In Fig. 11 this e�ect is

consistent with �rms ' �rms by N ' 1.3 e-folds after inflation.) Although a detailed discussion

of equilibration and thermalization is beyond the scope of the present work, it is clear from such

spectra that the final distribution of power among the � and � fluctuations is vastly di�erent from

that following the initial parametric resonance. Strong rescattering e�ects appear to have largely

erased any wavenumber-dependent information and yielded spectra that are similar among the �

and � fields.

Second, we have found that in all cases, �rms � h�i by the time �rms ' �rms. This implies that

the evolution of the lattice-averaged quantity h�i is a statistical phenomenon that assumes di�erent

values in each Hubble patch, rather than a coherent motion of the � field across superhorizon scales.

In order to examine this, we performed simulations with di�erent seeds for the fluctuations, all taken

from the same distribution. Fig. 12 shows the results for three such simulations. We see that while

the variances are identical, the lattice-averaged values depend strongly on the specific seed. Hence

di�erent Hubble patches, which in our simulation can be simulated by selecting di�erent seeds,

will develop di�erent values of h�i. This suggests that no � condensate exists with superhorizon

correlations, which in turn implies that the power in low-k modes cannot be imprinted onto the

adiabatic perturbations on CMB-relevant scales after the end of inflation.

More fundamentally, while our analysis shows that predictions for CMB observables in this

family of models remain una�ected by preheating, we emphasize that the formulas in Eq. (40)

h�i > h�i ) Multi-field background motion (???)
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Strong resonance and single-field motion
29
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FIG. 11: Left: The lattice-averaged fields and corresponding RMS values versus e-folds after the end of
inflation for Case D (positive ellipticity) with ⇠� = 85. We have used interpolation between the peaks of
h�i (blue), h�i (orange), �rms (red), and �rms (black). Right: The lattice-averaged motion in the � � �
plane between 1.3 and 2.7 e-folds after the end of inflation. Later times correspond to redder colors.

First, we note that the power spectra of the � and � fields have “equlibrated” (akin to the

spectra shown in Fig. 6) prior to the time when h�i dominates over h�i, hence no information

can be transmitted coherently from subhorizon to superhorizon scales. (In Fig. 11 this e�ect is

consistent with �rms ' �rms by N ' 1.3 e-folds after inflation.) Although a detailed discussion

of equilibration and thermalization is beyond the scope of the present work, it is clear from such

spectra that the final distribution of power among the � and � fluctuations is vastly di�erent from

that following the initial parametric resonance. Strong rescattering e�ects appear to have largely

erased any wavenumber-dependent information and yielded spectra that are similar among the �

and � fields.

Second, we have found that in all cases, �rms � h�i by the time �rms ' �rms. This implies that

the evolution of the lattice-averaged quantity h�i is a statistical phenomenon that assumes di�erent

values in each Hubble patch, rather than a coherent motion of the � field across superhorizon scales.

In order to examine this, we performed simulations with di�erent seeds for the fluctuations, all taken

from the same distribution. Fig. 12 shows the results for three such simulations. We see that while

the variances are identical, the lattice-averaged values depend strongly on the specific seed. Hence

di�erent Hubble patches, which in our simulation can be simulated by selecting di�erent seeds,

will develop di�erent values of h�i. This suggests that no � condensate exists with superhorizon

correlations, which in turn implies that the power in low-k modes cannot be imprinted onto the

adiabatic perturbations on CMB-relevant scales after the end of inflation.

More fundamentally, while our analysis shows that predictions for CMB observables in this

family of models remain una�ected by preheating, we emphasize that the formulas in Eq. (40)

30
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��-�
��-�
��-�
��-�
�����
�����
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�

<
ϕ�
>
�ϕ
��
�

FIG. 12: Lattice-averaged field values and corresponding RMS values for Case D (positive ellipticity) with
⇠ = 85 for three di�erent seeds for the initial fluctuations. Color coding is the same as in the left panel of
Fig. 11. The three di�erent seeds are shown in solid, dashed and dotted. Note that across the three seeds,
the late-time values of �rms (red) and �rms (black) remain consistent, whereas the late-time values of h�i

(orange) di�er significantly, indicating a lack of superhorizon coherence of the � field after the end of
inflation.

that describe the superhorizon evolution of adiabatic and isocurvature perturbations presuppose

the existence of a well-defined, coherent background motion, in terms of which one may define the

covariant turn-rate �, as in Eq. (44). When the RMS of the fields far exceed the lattice-averaged

field values, the existence of a coherent background motion becomes ill-defined. How to modify

simple relations like Eq. (40) for evolution deep into the nonlinear regime remains an interesting

question, beyond the scope of the present work.

4. Case E: Zero Ellipticity

We conclude our analysis with Case E (zero ellipticity), for which ⇠� = ⇠�, but for which, in

general, �� 6= g 6= �� (see Table I). Because the couplings in the Jordan-frame potential do not

equal each other, Case E is distinct from the symmetric Case B. Nonetheless, we see that the

phenomenology for Case E is largely indistinguishable from the benchmark Case A, both in terms

of the relevant time-scales (Fig. 7) as well as the evolution of the equation of state (Figs. 3 &

8). This result is not surprising, since any non-adiabatic behavior caused by the Riemann spike

in m2,� is not very sensitive to small changes among the couplings in the Jordan-frame potential.

The Riemann spike, after all, derives from the curvature of the field-space manifold, which depends

only on the nonminimal couplings ⇠I .

h�2i � h�i2
initial-condition-dependent h�i
No coherent background motion
on super-horizon scales

) CMB modes are safe

Evangelos Sfakianakis Field-space Effects in Preheating 18/21



Summary

Fast preheating for ⇠ & 100

Efficient re-scattering
) onset of thermalization

Robust single-field attractor

Fast approach to w ! 1/3

Detailed understanding of the
whole parameter space

� �� �� ���
�

����

���

���

�/����

|δ
χ �
|�
�|δ

ϕ �
|�

Non-minimal couplings
quickly lead to a

thermal radiation bath
while preserving
CMB predictions
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One last thing!

Higgs inflation is a multi-field non-minimally coupled model with
known SM couplings ) the inflaton decays into W, Z bosons.

m
spike

⇠ ⇠H
end

mB ⇠ 105
p

⇠
H

end

��-�

��-�

�
��
�
(�

��
)

��� ��� ���
���������� �������� ξ

For ⇠ & 103 preheating completes within ONE oscillation

van de Vis & E.I.S, Phys. Rev. D 99, no.8, 083519 (2019)
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Understanding preheating in major plateau models
reduces theoretical error-bars of the ns � r plot
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