

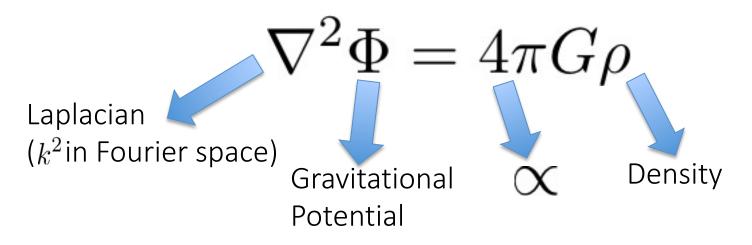
# Poisson isn't a red herring:

modified gravity on non-linear scales

Dan Thomas, Manchester, @dansdarkmatters

red herring

a fact, idea, or subject that takes people's attention away from the central point being considered:



Based on arXiv: 2004.13051, chosen as editor's suggestion for PRD

Credits: Definition from Cambridge online dictionary, image from wikipedia



### <u> Plan</u>

#### Why modified gravity? (To provoke observers)

Why model independent modified gravity? (To provoke theorists)

#### Punchline/Result

(You can all pause the video after this point and make coffee)

Some physical reasoning behind the result (Not too technical, I promise)

Closing remarks (Where I point out some caveats of this approach)

# Model-independent modified gravity: Why?

#### Why modified gravity?

- Not ruled out
- Dark sector (only gravitational evidence)
- WIMPs not found, tensions, Cosmological constant problem...
- Quantum gravity: where does GR break down? Is the IR limit exactly GR?
- Good to test accepted theories in new regimes

#### Why model-independent modified gravity?

- None of the models are really well motivated
- We might not have the right answer
- Horndeski isn't really general
- Acts as null test of standard cosmology
- Testing gravity is a good idea independently of dark sector motivation (PPN)

Aside: The story of Urbain Le Verrier, Neptune and Vulcan is a fascinating parable. Neptune was the first "dark matter"; GR was "modified gravity"

# The state of play

Model-independent modified gravity

- Well understood on large (linear) scales
- Model independence well-formulated on large (linear) scales

$$k^2\Phi = 4\pi G\mu(a,k) \bar{
ho} \Delta$$
 (Relativistic version of Poisson equation)

- No<sup>\*</sup> formulation of model independence on small scales
- Modified N-body codes for some specific models (small scales)

#### Future surveys (Euclid etc) will have majority of data on non-linear scales

\*: Cool work by Hassani & Lombriser (arXiv:2003.05927); Clifton & Sanghai (arXiv:1803.01157) But note these are *a priori* restricted to certain parts of theory space

### <u>Is this a problem?</u> Not just an elephant in the room... ... it is a whole safari.





#### Clue or red herring?

Poisson equation appears in lots of different contexts:

Linear GR, Newtonian limit, modified gravity...

Maybe we can just use this?

### <u>Punchline</u>

Can derive parameterised Poisson & "slip" (ratio of potentials) equations

Valid on all scales (density not required to be small)

$$\frac{1}{c^2}k^2\tilde{\phi}_P = -\frac{1}{c^2}4\pi G a^2\bar{\rho}\mu\left(a,\vec{k}\right)\left(\tilde{\delta} + \frac{\dot{a}}{a}\frac{3}{c^2k^2}\tilde{\theta}\right)$$
$$\tilde{\psi}_P = \eta\left(a,\vec{k}\right)\tilde{\phi}_P.$$

Can be used to analyse (& combine) data from any survey on any scales + Algorithm to determine whether a modified gravity theory fits into approach

(Note:  $\mu(a,k), \eta(a,k)$  sweep a lot of complications under the carpet)

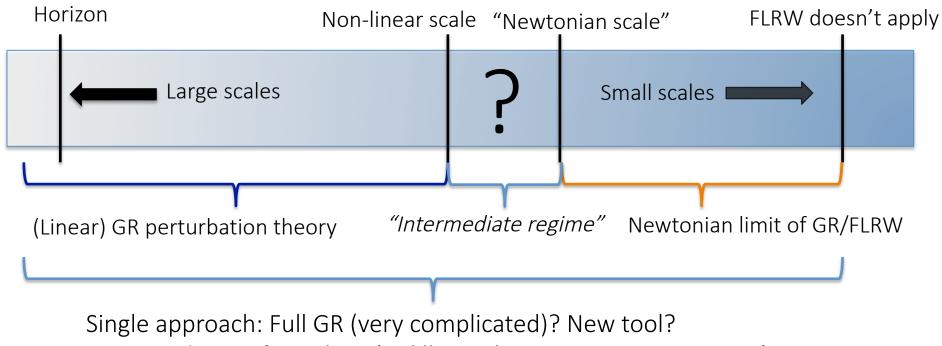


Pause the video, get some strong caffeine, and then I'll highlight some of the physical reasoning and steps in the argument.

### Gravity in cosmology

#### General Relativity

- Gravity studied in 2 limits: large scales (relativistic perturbation theory) & small scales (Newtonian)
- Little *explicit* discussion of possible "intermediate regime" between these
- Ideally want a single framework spanning all scales, including both limits

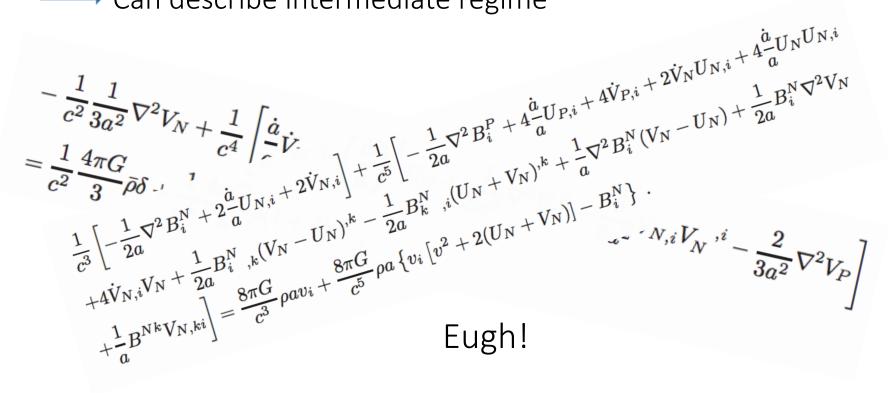


Post-Friedmann formalism (Milillo et al 2015; arXiv:1502.02985)

8

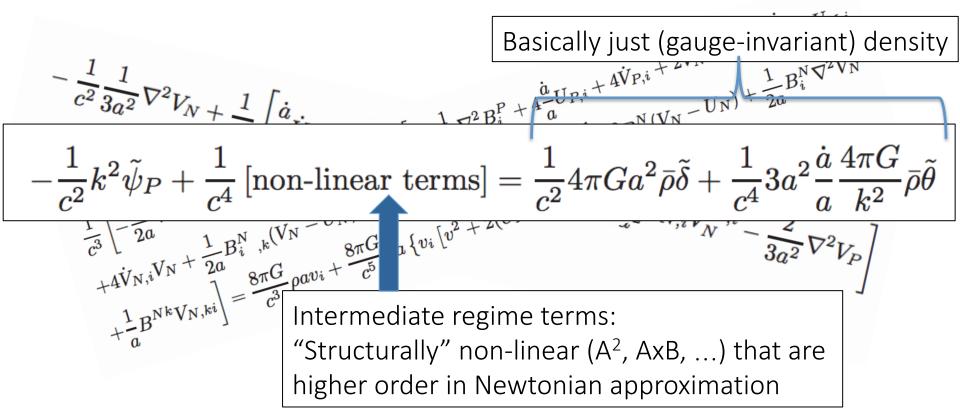
# Post-Friedmann formalism (full "1PF" equations)

- Post-Newtonian-like expansion in powers of speed of light  $\,c\,$
- Crucial: doesn't require small density contrast
- - → Can describe intermediate regime



# Post-Friedmann formalism (full "1PF" equations)

- Post-Newtonian-like expansion in powers of speed of light  $\,c\,$
- Crucial: doesn't require small density contrast
- - ➡ Can describe intermediate regime



# Late time GR+LCDM

Linearised Newtonian limit and perturbation theory agree in "quasi static" overlap regime Horizon FLRW doesn't apply Non-linear scale "Newtonian scale" No intermediate Large scales Small scales regime! Newtonian limit of GR/FLRW (Linear) GR perturbation theory

Use post-Friedman, drop all intermediate regime terms: "simple 1PF"

- Simple equations that apply on *all* scales
- Poisson contains the respective Newtonian and linear theory equations

$$\frac{1}{c^2}k^2\tilde{\psi}_P = -\frac{1}{c^2}4\pi Ga^2\bar{\rho}\tilde{\delta} - \frac{1}{c^4}3a^2\frac{\dot{a}}{a}\frac{4\pi G}{k^2}\bar{\rho}\tilde{\theta}$$

11

$$\frac{1}{c^2}k^2\tilde{\psi}_P = -\frac{1}{c^2}4\pi Ga^2\bar{\rho}\tilde{\delta} - \frac{1}{c^4}3a^2\frac{\dot{a}}{a}\frac{4\pi G}{k^2}\bar{\rho}\tilde{\theta}$$

#### If there is

- A good Newtonian limit on small scales
- No intermediate regime

Then gravity is described on ALL scales by this equation.

(Plus a gravitational slip equation).



Can turn these conditions into a set of checks to see if this applies to any particular modified gravity theory

# Back to modified gravity

- 1. Is the weak field metric appropriate on all scales in the theory?
- 2. Can the vector and tensor perturbations be ignored at first order?
- 3. No terms in linear Newtonian limit that aren't in linear perturbative limit?
- 4. Is quasi-static approximation good (sub-horizon & ignore time derivatives)?(Usually ensures linear perturbation theory matches linearised Newtonian)
- Is the Newtonian approximation a good description of all non-linear scales? (There is an explicit test for this using N-body simulations; see paper)

Theories that satisfy these can be described by the parameterised "simple 1PF" Poisson+slip equations on all scales

$$\frac{1}{c^2}k^2\tilde{\phi}_P = -\frac{1}{c^2}4\pi Ga^2\bar{\rho}\mu\left(a,\vec{k}\right)\left(\tilde{\delta} + \frac{\dot{a}}{a}\frac{3}{c^2k^2}\tilde{\theta}\right)$$

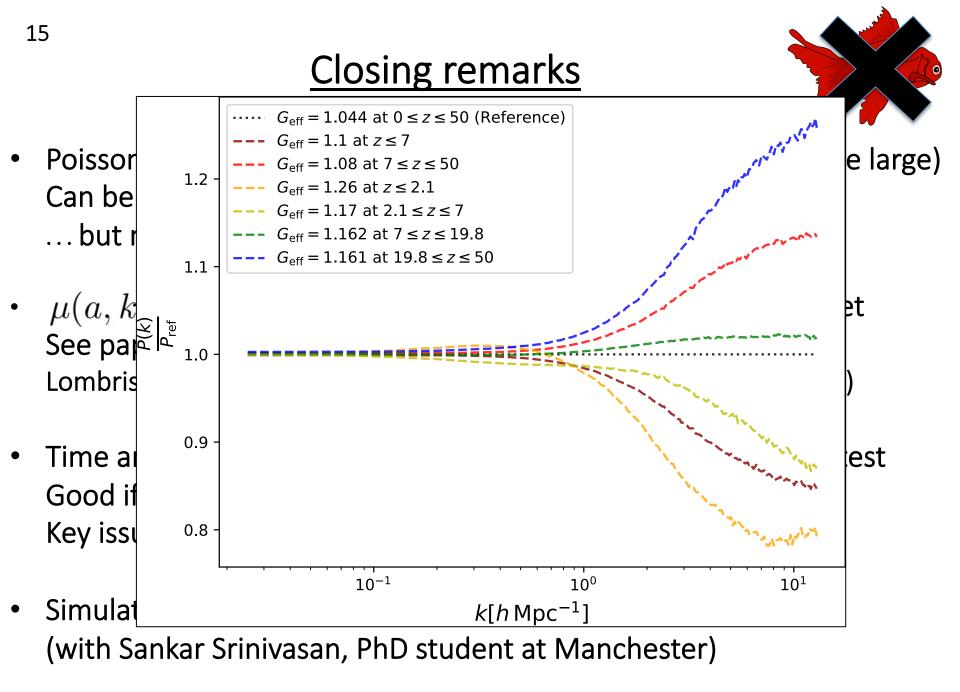
(Theories that don't probably struggle to create a sufficiently LCDM-like universe)

13

### **Closing remarks**



- Poisson (& slip) equation that apply on *all* scales (density can be large)
   Can be used to analyse (& combine) data from any survey...
   ... but more development required...
- $\mu(a, k), \eta(a, k)$  Sweep a lot of complications under the carpet See paper for possible functional forms to investigate Lombriser work:  $\mu(a, k), \eta(a, k)$  to match known theories such as f(R)
- Time and space "pixel approach" for μ(a, k), η(a, k): LCDM null test Good if no deviation detected.
   Key issue: hard to infer theory if deviation found
- Simulation work ongoing to explore phenomenology (with Sankar Srinivasan, PhD student at Manchester)



# Thanks!

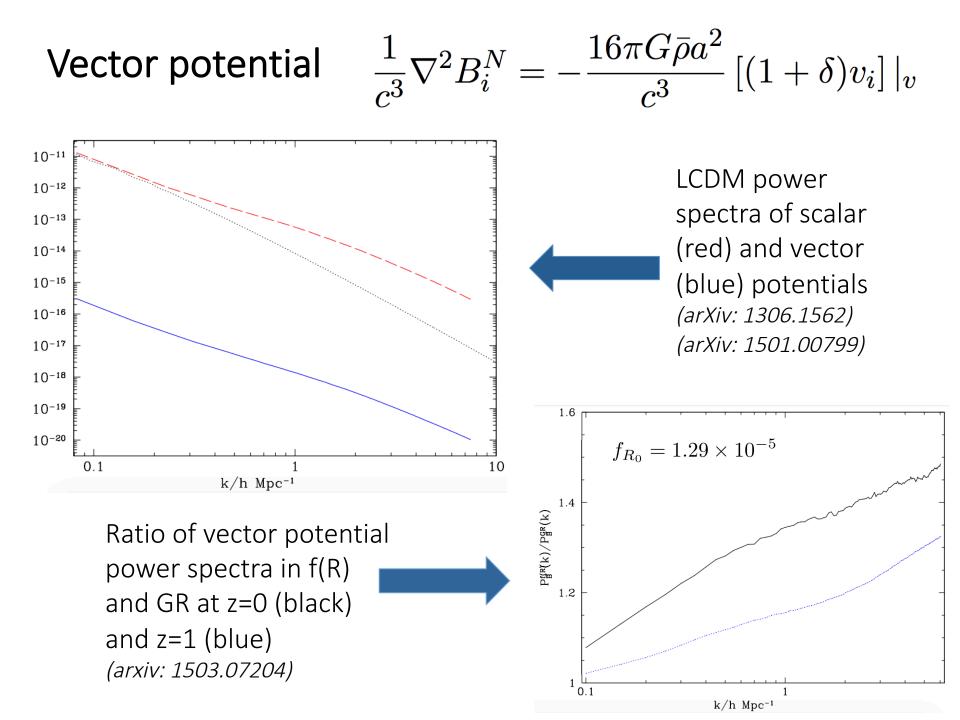
# **Bonus Content**

Complete "simple 1PF" gravity & matter equations

$$\begin{split} &\frac{1}{c^2}k^2\tilde{\psi}_P = -\frac{1}{c^2}4\pi Ga^2\bar{\rho}\tilde{\delta} - \frac{1}{c^4}3a^2\frac{\dot{a}}{a}\frac{4\pi G}{k^2}\bar{\rho}\tilde{\theta}\\ &\tilde{\psi}_P = \tilde{\phi}_P\\ &\frac{dv_i}{dt} + \frac{\dot{a}}{a}v_i - \frac{\phi_{P,i}}{a} = 0 \qquad \left[\frac{dv_i}{dt} + \frac{\dot{a}}{a}v_i - \frac{\phi_{P,i}}{a} = \frac{1}{c^2}\frac{1}{a}\frac{d}{dt}(a\omega_{Pi})\right]\\ &\frac{d\delta}{dt} + \frac{v_{,i}^i}{a}\left(1+\delta\right) - \frac{3}{c^2}\frac{d\psi_P}{dt} = 0. \end{split}$$

Vector required for consistency of Einstein equations; needs to be small

$$\frac{1}{2c^3a^2}k^2\tilde{\omega}_{Pi} = \left[\frac{1}{c^3}8\pi Ga\tilde{\rho}\tilde{v}_i\right]|_v - \frac{1}{c^5}8\pi G\bar{\rho}a\tilde{\omega}_{Pi}$$



# DE vs MG, and ubiquity of Poisson equation (sketch only!)

$$\mathcal{L} = (\phi)R + \mathcal{L}_{\phi} + \mathcal{L}_{m}$$

(Jordan frame)

$$\phi = \phi^{(0)}(t) + \frac{1}{c^2}\phi + \dots$$

Assuming a weak field metric (i.e linear limit or Newtonian approx), for simple DE or MG, one arrives at (schematically)

$$\nabla^2 \Psi = \frac{4\pi G}{\phi^{(0)}} \rho + f(\phi)$$

#### Gory post-Friedmann Details

$$g_{00} = -\left[1 - \frac{2U_N}{c^2} + \frac{1}{c^4} \left(2U_N^2 - 4U_P\right)\right]$$
$$g_{0i} = -\frac{aB_i^N}{c^3} - \frac{aB_i^P}{c^5}$$
$$g_{ij} = a^2 \left[\left(1 + \frac{2V_N}{c^2} + \frac{1}{c^4} \left(2V_N^2 + 4V_P\right)\right)\delta_{ij} + \frac{h_{ij}}{c^4}\right]$$

$$\phi_P := -(U_N + \frac{2}{c^2}U_P)$$
$$\psi_P := -(V_N + \frac{2}{c^2}V_P)$$

Metric

**Re-summed potentials** 

Four velocity

Stress-energy tensor

$$\begin{aligned} u^{i} &= \frac{1}{c} \frac{v^{i}}{a} u^{0}, \\ u^{0} &= 1 + \frac{1}{c^{2}} \left( U_{N} + \frac{1}{2} v^{2} \right) + \frac{1}{c^{4}} \left[ \frac{1}{2} U_{N}^{2} + 2U_{P} + v^{2} V_{N} + \frac{3}{2} v^{2} U_{N} + \frac{3}{8} v^{4} - B_{i}^{N} v^{i} \right] \\ u_{i} &= \frac{av_{i}}{c} + \frac{a}{c^{3}} \left[ -B_{i}^{N} + v_{i} U_{N} + 2v_{i} V_{N} + \frac{1}{2} v_{i} v^{2} \right], \\ u_{0} &= -1 + \frac{1}{c^{2}} \left( U_{N} - \frac{1}{2} v^{2} \right) + \frac{1}{c^{4}} \left[ 2U_{P} - \frac{1}{2} U_{N}^{2} - \frac{1}{2} v^{2} U_{N} - v^{2} V_{N} - \frac{3}{8} v^{4} \right]. \end{aligned}$$

$$\begin{aligned} T^{0}_{\ \ 0} &= -c^{2} \rho - \rho v^{2} - \frac{1}{c^{2}} \rho \left[ 2(U_{N} + V_{N}) v^{2} - B_{i}^{N} v^{i} + v^{4} \right] \\ T^{0}_{\ \ 0} &= -c^{2} \rho - \rho v^{2} - \frac{1}{c^{2}} \rho \left[ 2(U_{N} + V_{N}) v^{2} - B_{i}^{N} v^{i} + v^{4} \right] \\ T^{0}_{\ \ 0} &= -c^{2} \rho - \rho v^{2} - \frac{1}{c^{2}} \rho \left[ 2(U_{N} + V_{N}) v^{2} - B_{i}^{N} v^{i} + v^{4} \right] \\ T^{0}_{\ \ 0} &= -c^{2} \rho - \rho v^{2} - \frac{1}{c^{2}} \rho \left[ 2(U_{N} + V_{N}) v^{2} - B_{i}^{N} v^{i} + v^{4} \right] \\ T^{0}_{\ \ 0} &= -c^{2} \rho - \rho v^{2} - \frac{1}{c^{2}} \rho \left[ 2(U_{N} + V_{N}) v^{2} - B_{i}^{N} v^{i} + v^{4} \right] \\ T^{0}_{\ \ 0} &= -c^{2} \rho - \rho v^{2} - \frac{1}{c^{2}} \rho \left[ 2(U_{N} + V_{N}) v^{2} - B_{i}^{N} v^{i} + v^{4} \right] \\ T^{0}_{\ \ 0} &= -c^{2} \rho - \rho v^{2} - \frac{1}{c^{2}} \rho \left[ 2(U_{N} + V_{N}) v^{2} - B_{i}^{N} v^{i} + v^{4} \right] \\ T^{0}_{\ \ 0} &= -c^{2} \rho a v^{i} + \frac{1}{c} \rho a \left\{ v_{i} \left[ v^{2} + 2(U_{N} + V_{N}) \right] - B_{i}^{N} \right\} , \\ T^{0}_{\ \ 0} &= -c^{2} \rho v^{i} v_{i} + \frac{1}{c^{2}} \rho \left\{ v^{i} v_{i} \left[ v^{2} + 2(U_{N} + V_{N}) \right] - v^{i} B_{j}^{N} \right\} , \\ T^{0}_{\ \ 0} &= -c^{2} \rho v^{i} v_{j} + \frac{1}{c^{2}} \rho \left\{ v^{i} v_{j} \left[ v^{2} + 2(U_{N} + V_{N}) \right] - v^{i} B_{j}^{N} \right\} , \\ T^{0}_{\ \ 0} &= -c^{2} \rho v^{i} v_{j} + \frac{1}{c^{2}} \rho \left\{ v^{i} v_{j} \left[ v^{2} + 2(U_{N} + V_{N}) \right] - v^{i} B_{j}^{N} \right\} , \\ T^{0}_{\ \ 0} &= -c^{2} \rho v^{i} v_{j} + \frac{1}{c^{2}} \rho \left\{ v^{i} v_{j} \left[ v^{2} + 2(U_{N} + V_{N}) \right] - v^{i} B_{j}^{N} \right\} .$$