

Latest Results from the full exposure of DAMIC at SNOLAB

Daniel Baxter ...on behalf of the DAMIC at SNOLAB collaboration

> **Cosmology from Home August 24 - September 4, 2020**

Dark Matter Begeman, et al. MNRAS 249 (1991) 200 NGC 6503 (km **Evidence**: 100 Dark matter **Galaxy Rotation** Atoms Dark Luminous 4.9% Energy CMB \bullet Gas 68.3% Dark 30 Lensing Radius (kpc) • Matter 26.8% ...and many more ullet6000 5000 Interactions: 4000 \mathcal{D}_{ℓ}^{TT} [$\mu \mathrm{K}^2$] 3000 TODAY Gravity: YES (matter) Planck Collaboration, A&A 594, A11 (2016) 2000 EM: NO (*dark*) • 1000 other: maybe? • 600 - Weakly Interacting Massive Particles 300 ΔD_{ℓ}^{TT} - Axions 30 -300 -60 -600 500 1000 2500 30 2 10 1500 2000

Direct Detection

- Build a detector to identify the small energy deposition of dark matter scattering off SM particles
- Scattering off nuclei (elastic):
 - The standard WIMP paradigm
 - 1-1000 GeV DM masses
 - 0.3-300 keV recoil energy
- Scattering off electrons (inelastic):
 - As in the case of a dark photon
 - 1-1000 MeV DM masses
 - 1-100 eV recoil energy

direct detection

production at colliders

DAMIC Collaboration

Charge Coupled Devices

- Interaction with silicon produces free charge carriers...
 - ...which are drifted across fully-depleted region...>very little loss of charge
 - ...and collected in 15 micron square pixels... exceptional position resolution
 - ...to be stored until a user-defined readout time after many hours.
 large exposures
- The method of read-out can be optimized to improve read-out noise at the cost of position resolution (1x100 binning)

- As charges drift across the CCD, they experience lateral thermal motion (diffusion) proportional to vertical distance traveled (depth)
- Above 1 keV, the event profile can identify the progenitor...

Modeling Diffusion

• Muons give an excellent calibration for the depth-dependence of sigma

DAMIC WIMP Results (2016)

DAMIC WIMP Results (2016)

- Prototype detector deployed at SNOLAB with 8Mpix (2.9g) silicon CCDs during 2015
- Successfully demonstrated the ability of a low threshold CCD array to search for dark matter

DAMIC at SNOLAB Upgrade

- The prototype run of DAMIC at SNOLAB never held more than 9g of CCDs with a fiducialized background rate of ~15 counts/kg/day/keV (dru)
- The DAMIC at SNOLAB upgrade (presented here) contains:
 - (x7) 16 Mpix (6.0g) active CCDs (total mass = 42 g)
 - >300 days of cumulative exposure
 - Significantly lower backgrounds due to addition of ancient lead shield (fiducialized background rate of ~4 dru)
 - One CCD (Extension 1) held in an EF copper module and surrounded by lead bricks (fiducialized background rate of ~2 dru)

DAMIC at SNOLAB Upgrade

DAMIC at SNOLAB CCDs

- 4000x4000 pixels (6x6 cm²)
- Pixel size 15x15 microns²
- Thickness ~675 microns
- Cooled to 140 K
- One Kapton cable per CCD
- Dominant intrinsic background expected to be tritium production from direct activation of the silicon wafers prior to production

CCD design by LBNL

Next: Updated Nuclear Recoil Search

- In the 2016 result, a fiducial cut (in *σ*) was used to isolate the "bulk" of the detector
- At lower energies, the difference between bulk and surface is less clear
- We're going to need a background model!

- 1. Categorize detector backgrounds (ER: γ/β)
 - Assumption: neutron, muon, alpha –induced backgrounds are subdominant

- 1. Categorize detector backgrounds (ER: γ/β)
 - Assumption: neutron, muon, alpha –induced backgrounds are subdominant

2. Simulate your detector (GEANT4 v10.02, Livermore Physics List)

• Assumption: GEANT4 accurately simulates relevant decays down to threshold

- 1. Categorize detector backgrounds (ER: γ/β)
 - Assumption: neutron, muon, alpha –induced backgrounds are subdominant
- 2. Simulate your detector (GEANT4 v10.02, Livermore Physics List)
 - Assumption: GEANT4 accurately simulates relevant decays down to threshold
- 3. Choose an energy region of interest $(0.05 6 \text{ keV}_{ee})$
 - Threshold: below 0.05 keV_{ee}, our reconstruction efficiency is < 10%
 - Maximum: above 6 keV_{ee}, mostly sensitive to heavier DM ($M_{\chi} > 10$ GeV)

- 1. Categorize detector backgrounds (ER: γ/β)
 - Assumption: neutron, muon, alpha –induced backgrounds are subdominant
- 2. Simulate your detector (GEANT4 v10.02, Livermore Physics List)
 - Assumption: GEANT4 accurately simulates relevant decays down to threshold
- 3. Choose an energy region of interest $(0.05 6 \text{ keV}_{ee})$
 - Threshold: below 0.05 keV_{ee}, our reconstruction efficiency is < 10%
 - Maximum: above 6 keV_{ee}, mostly sensitive to heavier DM ($M_{\chi} > 10$ GeV)
- 4. Set aside some amount of data as a check (Ext1)
 - Ext1 is sandwiched between two ancient lead bricks and has ~half the background

- 1. Categorize detector backgrounds (ER: γ/β)
 - Assumption: neutron, muon, alpha –induced backgrounds are subdominant
- 2. Simulate your detector (GEANT4 v10.02, Livermore Physics List)
 - Assumption: GEANT4 accurately simulates relevant decays down to threshold
- 3. Choose an energy region of interest $(0.05 6 \text{ keV}_{ee})$
 - Threshold: below 0.05 keV_{ee}, our reconstruction efficiency is < 10%
 - Maximum: above 6 keV_{ee}, mostly sensitive to heavier DM ($M_{\chi} > 10$ GeV)
- 4. Set aside some amount of data as a check (Ext1)
 - Ext1 is sandwiched between two ancient lead bricks and has ~half the background
- 5. Perform a fit against data $(6 20 \text{ keV}_{ee})$
 - Assumption: no DM sensitivity in this mass range
 - Maximum: want to include full tritium spectrum (endpoint 18.6 keV_{ee})

GEANT4 Geometry

1						
	·		Parent Chain	Isoptopes Considered	Simulation ID	Comments
14		(not shown)	U238	Pa234	234a91z	
		Copper Cryostat		Th234	234a90z	
			Ra226	Pb214	214a82z	
		Outer Lead Shielding		Bi214	214a83z	
			Pb210	Pb210	210a82z	(surface and bulk)
				Bi210	210a83z	· · · · · · · · · · · · · · · · · · ·
		Lead	Th232	Ac228	228a89z	
92				Ra228	228a88z	
				Pb212	212a82z	
				Bi212	212a83z	$0.64 \ BR$
				T1208	208a81z	$0.36 \ \mathrm{BR}$
			K40	K40	40a19z	
pper Box		Flex Cable	Activation	Co56	56a27z	(copper/flex/screws)
				Co57	57a27z	
		Electroformed		Co58	58a27z	
		Copper Module		Co60	60a27z	
				Fe59	59a26z	
				Mn54	54a25z	
		Copper	7	Sc46	46a21z	
ပ		Modules	Si32	Si32	32a14z	(silicon only)
				P32	32a15z	
			H3 (Tritium)	H3	3a1z	(silicon only)
			Na22	Na22	22a11z	(silicon only)

Decay Chains Simulated

• ...and apply saturation and noise

Processing Simulation Output

- Each isotope is individually simulated for each detector volume with the energy and position of each deposition recorded.
- We then apply our diffusion model to the energy depositions and pixelate on our 15x15 micron CCDs
- ...rebin these pixels according to our 1x100 readout

Saturation + noise

image d'un electron sans la diffusion (contenu en AD

Image d'un electron avec la diffusion (contenu en ADI

Material Assays

Part	U-238	Ra-226	Pb-210	Th-232	K-40
CCD	$<\!0.53$	< 0.43	<33*	< 0.4	< 0.04
Kapton cable	5000 ± 420	420 ± 490	420*	280 ± 40	2480 ± 170
Copper	$<\!10.7$	<11.2	2350 ± 720	$<\!\!3.5$	$<\!\!2.7$
Module Screws	1400 ± 3800	$<\!\!138$	$2350\pm720^{\dagger}$	200 ± 140	2400 ± 1300
Ancient lead shield	$<\!\!2.0$	$<\!22.5$	2850^{\ddagger}	0.2^{\ddagger}	$<\!0.5$
Outer lead shield	<1.1	$<\!\!17.6$	1560000 ± 430000	$<\!0.4$	<19

(all activities above in decays/kg/day)

- We assayed all components near the CCDs to the level at which each is simulated to contribute 1 dru
- The CCD activities actually come from a direct analysis of our data, which puts far stronger constraints than the assays which we have performed thus-far
 A. Aguilar-Arevalo et al, JINST 10 (2015) P08014 [arXiv:1506.02562]

Fitting Against Data

Simulation Best Fit

Energy Projection

Sigma Projection

Output (simulated variables)

Producing Reconstructed Coordinates

- So we have a background model in terms of simulated (true) variables
- We need a way to translate these variables into reconstructed variables to compare against data down to our 50 eVee threshold
- Procedure:
 - 1. Randomly sample the background model
 - 2. Apply diffusion model to translate depth into a pixel spread
 - 3. Paste this diffused pixel spread on a blank (zero exposure) image to account for readout noise
 - 4. Run same clustering algorithm on these fake images as the data

2773 2774

2775

2776

x (pixel)

2781

2777 2778 2779 2780

Results

- We observe an excess of bulk events at low energies
- We do not report this bulk excess as a WIMP signal
- Need better validation of the background model in this energy range

Results – WIMP Limits

DAMIC Phase 1 Complete!

- DAMIC at SNOLAB is the first CCD dark matter array
- We have improved the limits by a factor of ~10 and excluded a significant fraction of the CDMS-II Si allowed region
- Inevitably, we were going to have a few surprises along the way
- ... and we learned a lot about how low background CCDs work!
- Skipper CCDs are the future

Next Steps: Verify

- Ongoing upgrade to the SNOLAB detector will install Skipper CCDs
- ...another measurement with lower threshold in the same background environment
 - If this is a threshold effect, it should go away
 - If it is a missing component in the background model, we will have many more events to study

How do we interpret the excess?

Possibilities:

- 1. We are missing a bulk component in our background model
- 2. We are missing a front component in our background model
- 3. We are incorrectly modeling detector threshold effects
- 4. We are missing a front detector effect
- 5. We are observing interesting new silicon physics
- 6. We are observing some type of dark matter interaction

Background Model

New

Physics

Looking to the Future – DAMIC-M

- Prototype DAMIC-M "low background chamber" will test this background model
- 25g of low background Skipper CCDs
- 2 (+4) cm of ancient (low background) lead on all sides of CCD
- Goal: 1 dru and 2e- threshold
- Results in 2021

Cosmology from Home 2020 – DAMIC – Daniel Baxter

Looking to the Future – DAMIC-M

• The DAMIC-M detector (DAMIC at Modane) will achieve background-free exposure of 1 kgyear above a threshold of 2e⁻ using Skipper CCDs

Conclusions

- DAMIC at SNOLAB continues to produce new, interesting results:
 - NR Limits: submitted to PRL (2020) [arXiv:2007.15622]
 - ER Limits: PRL 123, 181802 (2019) [arXiv:1907.12628]
- DAMIC-M will improve on this with lower backgrounds, single electron resolution, and much larger exposure
 - LBC (2021)
 - Full detector (installation 2023)
- OSCURA will push the limits of the CCD technology to 10 kg of silicon, single-electron threshold, 0.01 dru detector
 - DoE BRN funded R&D experiment merging the efforts of all US scientists work on DAMIC at SNOLAB, DAMIC-M, and SENSEI

Thank you

Cosmology from Home 2020 – DAMIC – Daniel Baxter

Energy Calibration

- Charge Transfer inefficiencies in the serial register are much less than 1% per 4000 transfers – the serial register length (right) \blacktriangleright No expected energy distortion of the cluster in x
- Optical photon calibrations were done in situ for all CCDs at SNOLAB (below)

0.3

0.25

Y-overscan (=1)

Compton Scattering

Low-Energy Sigma Validation

Ionization Efficiency

 Calibration using SbBe source with very low energy neutrons (< 24 keV)

 Ionization efficiency calibrated down to 60 eV_{ee}!!!

Cosmology from Home 2020 – DAMIC – Daniel Baxter

Dark Current

• DAMIC at SNOLAB has reported the lowest published dark current of any silicon experiment: 2 x 10⁻²² A cm⁻²

CCD		λ_d	μ_0	$\lambda = \lambda_{\rm tot} - \lambda_d$
No.	$\sigma_{ m pix}~[e^-]$	$[e^{-} \text{ mm}^{-2} \text{ img}^{-1}]$	[<i>e</i> ⁻]	$[e^{-} \text{ mm}^{-2} \text{ d}^{-1}]$
1	1.628(1)	8.2(2)	-0.185(3)	2.8(2)
3	1.572(1)	7.8(2)	-0.160(4)	1.7(2)
4	1.594(1)	10.0(2)	-0.219(4)	1.0(2)
5	1.621(1)	8.5(2)	-0.183(4)	2.0(2)

A. Aguilar-Arevalo et al. PRL 123, 181802 (2019) [arXiv:1907.12628]

Electron Recoil Limits

A. Aguilar-Arevalo et al. PRL 123, 181802 (2019) [arXiv:1907.12628]

...see Sho Uemura's talk from March 27 for new results from SENSEI

Systematic Uncertainties – Back

- Our dominant background model uncertainty can be parameterized by a backside exponential
- A back-side exponential rise is non-degenerate with a signal excess
- Consider this a free parameter in the WIMP analysis to account for the systematic uncertainty of the ²¹⁰Pb location and PCC
- No need for a fiducial cut!

Quality Cuts and Efficiencies

1.0

- Mask "hot" regions of the CCD which contain higher dark current (remove ~16% mass) or high-E depositions
- Scan over the image and perform a likelihood ratio test of Gaussian vs. flat to find event clusters
- This clustering algorithm has been characterized to have nearly full efficiency down to approximately 100 eV_{ee}

Low Energy Event Distribution

Event Gallery

6500

6466

6468

position x

0

4500 5000 5500 6000 6500 7000 7500 8000 8500

Coincidence Analysis

....see upcoming publication or A. Aguilar-Arevalo et al, JINST 10 (2015) P08014 [arXiv:1506.02562] for details