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Cosmic conundrum

Are the dark components of our Universe 
an exotic particle/field or a modification 
to gravity?

A common way to 
explore this is to 
measure the “growth 
rate of structure”
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The growth rate of 
structure

General Relativity (GR) gives strong predictions for the growth rate

f (a) ≈ Ωm
0.55(a)• Evolves only with matter density

• Scale-independent (mostly...)

Peculiar velocities are sourced by 
gravity and so offer a novel way to test 
this and confirm/falsify GR

Courtois et. al., 2013
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ABSTRACT
Peculiar velocity surveys present a very promising route to measuring the growth rate of large-
scale structure and its scale dependence. However, individual peculiar velocity surveys suffer
from large statistical errors due to the intrinsic scatter in the relations used to infer a galaxy’s
true distance. In this context we use a Fisher Matrix formalism to investigate the statistical
benefits of combining multiple peculiar velocity surveys. We find that for all cases we con-
sider there is a marked improvement on constraints on the linear growth rate f�8. For example,
the constraining power of only a few peculiar velocity measurements is such that the addition
of the 2MASS Tully-Fisher survey (containing only ⇠ 2, 000 galaxies) to the full redshift and
peculiar velocity samples of the 6-degree Field Galaxy Survey (containing ⇠ 110, 000 red-
shifts and ⇠ 9, 000 velocities) can improve growth rate constraints by ⇠ 20%. Furthermore,
the combination of the future TAIPAN and WALLABY+WNSHS surveys has the potential to
reach a ⇠ 3% error on f�8, which will place tight limits on possible extensions to General
Relativity. We then turn to look at potential systematics in growth rate measurements that can
arise due to incorrect calibration of the peculiar velocity zero-point and from scale-dependent
spatial and velocity bias. For next generation surveys, we find that neglecting velocity bias in
particular has the potential to bias constraints on the growth rate by over 5�, but that an offset
in the zero-point has negligible impact on the velocity power spectrum.

Key words: cosmology: theory - large-scale structure of Universe - cosmological parameters

1 INTRODUCTION

The current concordance model of cosmology consists of a uni-
verse whose dynamics and geometry can be described using so-
lutions to General Relativity (GR; Einstein 1916). In this model,
the gravitational evolution of the Universe is caused by an energy-
momentum tensor with only four components: radiation, baryonic
and dark matter, and dark energy in the form of a cosmological
constant. There exists overwhelming support for this consensus
cosmological model from observations throughout the expansion
history of the universe, including those of the Cosmic Microwave
Background (CMB, Planck Collaboration et al. 2015a), supernovae
(Freedman et al. 2012; Betoule et al. 2014), galaxy lensing (Hey-
mans et al. 2012) and the large scale distribution of galaxies (An-
derson et al. 2014). However, whilst the inclusion of a cosmological
constant recovers the measured expansion rate of the universe and
the rate at which structure within it grows, its exact nature remains
unknown. Whether dark energy is indeed caused by a cosmological
constant or arises instead due to large-scale post-GR modifications

? Email: cullan.howlett@icrar.org

to gravity remains one of the fundamental unanswered questions in
cosmology.

One of the key observables that allows us to distinguish be-
tween different models of gravity and dark energy is the linear
growth rate, f = d lnD(a)/d ln a, the logarithmic derivative of
the linear growth factor, D(a), with respect to the scale factor
of the universe, a. The linear growth factor describes how a den-
sity perturbation in the linear regime grows over time. Further-
more, under the assumption of GR, the linear continuity equa-
tion can be used to relate the density field, �(x, a), to the velocity
field,v(x, a), via

r · v(x, a) = �a
2
H(a) d�(x, a)/da. (1)

H(a) is the cosmology-dependent Hubble parameter. Knowing
how a density perturbation evolves with time and using the equa-
tion for the linear growth rate, this becomes

r · v(x, a) = �aH(a)f(a)�(x, a). (2)

We can also define the velocity divergence field as, ✓(x, a) =
r · v(x, a)/(aH(a)f(a)). Comparing this to Eq. 2 we can see
that, at least on linear scales, the velocity divergence field and the

c� 2016 RAS
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Figure 4. Tully-Fisher relations for 2MTF galaxies in the J, H and K bands (left to right). The red solid lines are the TF template relations in the three bands.
By making a 50 × 50 grid on the Tully-Fisher relation surface logW − M , we counted the number of galaxies falling in every grid point, and took these
counts as the number density of the Tully-Fisher plot, which are indicated by the color contours.

3.4 Malmquist bias correction

The term ‘Malmquist bias’ describes a set of biases originating
from the spatial distribution of objects. There are two types of bi-
ases that one may consider. Inhomogeneous Malmquist bias arises
from local density variations along the line of sight, and is much
more pronounced when one is working in real space. This is be-
cause, as explained by Strauss & Willick (1995), the large dis-
tance errors cause the observer to measure galaxy distances scat-
tered away from overdense regions in real space. In contrast, the
much smaller redshift errors mean that this effect is insignificant
in redshift space. While some other TF catalogs, such as SFI++,
included galaxy distances in real space, the fact that we operate in
redshift space means that inhomogeneous Malmquist bias is negli-
gible. However, we must account for the second type of Malmquist
bias, homogeneous Malmquist bias.

Homogeneous Malmquist bias comes about as a consequence
of the selection effects of the survey, which cause galaxies to be
preferentially included or excluded from the survey, depending on
their distance. Ideally, the survey selection function is a known an-
alytical function, allowing for a relatively straightforward correc-
tion for selection effects. However, galaxy peculiar velocity sur-
veys often have complex selection functions, requiring ad hoc ap-
proximations in the application of Malmquist bias corrections (e.g.,
Springob et al. 2007).

In the case of 2MTF, we used homogeneous criteria in de-
termining which galaxies to observe. As explained in Section 2,
all 2MRS galaxies with K< 11.25 mag, cz < 10, 000 km/s, and
b/a < 0.5 that also met our morphological selection criteria were
targeted for inclusion in the sample. However, many of the targeted
galaxies were not included in the final sample, because there was
no H I detection, the detection was marginal, or there was some
other problem with the spectrum that prevented us from making an
accurate Tully-Fisher distance estimate.

We thus adopt the following procedure for correcting for
Malmquist bias (explained in more detail by Springob et al. in
prep.):

1) Using the stepwise maximum likelihood method
(Efstathiou et al. 1988), we derive the K-band luminosity
function for all galaxies in 2MRS that meet our K-band apparent
magnitude, Galactic latitude, morphological, and axis ratio criteria.
For this purpose, we include galaxies beyond the 10,000 km/s
redshift limit, to simplify the implementation of the luminosity
function derivation. For this sample, which we designate the

‘target sample’, we fit a Schechter function (Press & Schechter
1974), and find Mk∗ = −23.1 and α = −1.10. (The stepwise
maximum likelihood method does not determine the normalization
of the luminosity function, but that is irrelevant for our purposes
anyway.) We note that this luminosity function has a steeper faint
end slope than the 2MASS K-band luminosity function derived by
Kochanek et al. (2001), who find α = −0.87.

2) We next assume that the ‘completeness’, which in this case
we take to mean the fraction of the target sample that is included
in our 2MTF peculiar velocity catalog for a given apparent magni-
tude bin, is a simple function of apparent magnitude, which is the
same across the sky in a given declination range. We compute this
function, simply taking the ratio of observed galaxies to galaxies
in the target sample for K-band apparent magnitude bins of width
0.25 mag, separately for two sections of the sky: north and south
of δ = −40◦. This divide in the completeness north and south of
δ = −40◦ is due to the fact that the GBT’s sky coverage only goes
as far south as −40◦, and the galaxies south of that declination
were only observed by the somewhat smaller (and therefore less
sensitive) Parkes telescope.

3) Finally, for every galaxy in the 2MTF peculiar velocity
sample, we take the uncorrected log(dz/d∗TF) value, and the error
ϵd, and compute the initial probability distribution of log(dz/dTF)
values, assuming that the errors follow a normal distribution in
these logarithmic units. For each possible value of the loga-
rithmic distance ratio log(dz/dTF,i) within 2σ of the measured
log(dz/d

∗
TF), we weight the probability by wi, where 1/wi is the

completeness (as defined in Step 2) integrated across the entire
K-band luminosity function (derived in Step 1), evaluated at the
log(dz/dTF,i) in question. Note that this involves converting the
completeness from a function of apparent magnitude to a function
of absolute magnitude, using the appropriate distance modulus for
the distance in question.

From these newly re-weighted probabilities, we calculate
the mean probability-weighted log(distance), as well as the cor-
rected logarithmic distance ratio error. This is our Malmquist bias-
corrected logarithmic distance.

The histograms of the logarithmic distance ratios log
dcz
dTF

with the errors are shown in Figure 5 and Figure 6 respectively.
The Tully-Fisher distances plotted here are all Malmquist bias-
corrected. A histogram of the relative errors of linear Tully-Fisher
distances dTF is plotted in Figure 7. The mean errors of the Tully-
Fisher distances are around 22% in all three bands.

Hong et. al., 2014 

They are a direct measure of 
matter field, independent of 
galaxy bias and can be 
combined with redshift 
surveys to overcome cosmic 
variance.

Peculiar velocities can be 
inferred from empirical 
distances and an observed 
redshift.

Peculiar Velocity 
Measurements
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Currently limited 
by small numbers 
and intrinsic 
scatter.

Around ~20,000 
total PV 
measurements, but 
with varying 
selection functions 
and reliability 
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258 C. Magoulas et al.

Figure 9. Interactive 3D visualization of the 6dFGS J-band FP in {r, s, i}-space. The best-fitting plane (in grey) has slopes a = 1.523 and b = −0.885, and
an offset c = −0.330. The galaxies are colour coded according to whether they are above (blue) or below (black) the best-fitting plane. The 1σ , 2σ and 3σ

contours of the 3D Gaussian distribution (light grey) can be toggled in the interactive plot environment. (Readers using Acrobat Reader v8.0 or higher can
enable interactive 3D viewing of this schematic by mouse clicking on the figure; see Appendix B for more detailed usage instructions.)

likelihoods using the best-fitting FP values from each individual
mock (black histogram). It makes little difference which method is
used, as the distribution of likelihoods for these two situations are
very similar.

The mean of each histogram (red: lnL = 20 878 ± 225; black:
lnL = 20 897 ± 224) is plotted as a solid line. The likelihood of the
best fit to the actual data (lnL = 21 126) is shown by the dashed
vertical line and is larger than these means but still well within the
range of likelihoods spanned by the mock samples. The fact that
the likelihood recovered from the data is higher than that from the
mocks (i.e. lnL is more positive) is a result of excluding the χ2

outliers from the data, which may also remove the extreme tail of
the Gaussian distribution. Genuine outliers do not exist in the mock
samples and so no χ2 clipping is applied, and the lower likelihoods
of the mock samples in Fig. 11 reflect this difference.

In summary, the similarity in likelihood values indicates that the
fitting algorithm has accurately recovered the input FP and also that
the 3D Gaussian model is a suitable representation of the observed
FP distribution.

5.4 Additional σ component of 3D Gaussian vectors

Our 3D Gaussian model of the FP assumes that the s component of
the v2 vector is zero, i.e. the vector representing the longest axis of
the 3D Gaussian lies wholly in the r–i plane. This is based in part
on previous studies (Colless et al. 2001; Saglia et al. 2001), and in
part assumed for convenience and simplicity.

We can test how accurate this assumption is by extending the
vector definitions of equation (5) to include this component, with
coefficient k, defining the set of orthogonal axes as

v1 = r̂ − a ŝ − b î,

v2 = r̂ − k ŝ + (1 − ka)î/b,

v3 = (ka2 − a + kb2)r̂ + (ka − 1 − b2)ŝ + (kb + ab)î, (19)

and then including this extra parameter in our fitting algorithm. We
then perform a nine-parameter ML fit with the same J-band FP
sample of galaxies and find a best-fitting value k = 0.09 ± 0.01 and
a J-band FP given by

C⃝ 2012 The Authors, MNRAS 427, 245–273
Monthly Notices of the Royal Astronomical Society C⃝ 2012 RAS

The Astrophysical Journal, 763:88 (28pp), 2013 February 1 Campbell et al.
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Figure 20. Host-galaxy g− r color as a function of absolute r-band model
magnitude (both quantities k-corrected to z = 0.1) for the host galaxies of the
photometrically classified SNe Ia (black dots) and the subsample of SNe Ia that
have been spectroscopically confirmed (blue cross symbols).
(A color version of this figure is available in the online journal.)

2005), and thus the target selection would appear to favor de-
tection of fainter SNe Ia. However, it has recently been shown
that SNe in massive galaxies tend to be overluminous for their
light-curve shape and color (Gallagher et al. 2008; Kelly et al.
2010; Sullivan et al. 2010; Lampeitl et al. 2010b). These effects
combine with our host-galaxy magnitude limit in a complicated
manner that is not captured in our simulations, but which merits
further study in the future.

It is important to remember that despite these potential
biases, photometric classification yields a less biased host-
galaxy sample than our spectroscopic sample. In Figure 20
we show the color–magnitude diagram for the host galaxies
in our BOSS sample, with the subsample of spectroscopically
classified SNe Ia shown in blue. For each galaxy, we plot
the g− r color and the absolute r-band model magnitude,
both of which have been k-corrected using the standard SDSS
software (Blanton & Roweis 2007). As the default, we quote
all absolute magnitudes and the g− r color at z = 0.1. The
host galaxies of the spectroscopic subset are, on average,
fainter than the whole population of BOSS host galaxies. A
Kolmogorov–Smirnov test of the k-corrected model r−band
absolute magnitude distributions of the two galaxy samples
(spectroscopically confirmed SN hosts and photometrically
confirmed SN hosts) confirms that the two distributions are not
the same at a statistical significance of 99.9%. The photometric
sample includes intrinsically brighter host galaxies, which may
be due to the increased volume sampled by the photometric
sample as such luminous, massive galaxies are rare. It could
also be a product of the SN spectroscopic follow-up avoiding the
brightest hosts, as in these cases it is more difficult to separate the
SN from the host-galaxy light. However, there does not appear
to be a bias in the g0.1 − r0.1 model colors, which is reassuring.

5. HUBBLE DIAGRAM

We show in Figure 21 the Hubble diagram for our final
sample of 752 photometrically classified SNe Ia, derived from
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Figure 21. Hubble diagram of the photometrically classified SDSS-II SN Ia
sample. We have corrected for the Malmquist bias as discussed in Section 4.1.
We use the best-fit values of α and β (see Section 6) and assumed the same M
as in the simulations (M = 29.8) when creating this Hubble diagram. The SN
intrinsic dispersion has been included in the error bars shown. Blue points show
the subsample of SNe Ia that have been spectroscopically confirmed as part
of the SDSS-II SN Survey, while the black points only possess a photometric
classification. The bottom panel shows the Hubble residuals of the data from
the best-fit cosmology model (Section 6).
(A color version of this figure is available in the online journal.)

the SDSS-II SN Survey photometry and SDSS-III BOSS host-
galaxy spectroscopy (Section 3.2). In contrast to Figure 16, we
have now applied our Malmquist bias correction to the Hubble
diagram as derived in Section 4.1. We have not corrected our
sample for host-galaxy mass correlations, as it is beyond the
scope of this paper (see Section 7.1).

For comparison, we highlight in Figure 21 the subsample of
208 SNe Ia in our photometric sample that have spectroscopic
confirmation from the SDSS-II SN Survey (shown in blue),
and label this subsample “spec Ia.” Therefore, 544 of our
photometrically classified SNe Ia are have no spectroscopic
information at all, comprising 72.2% of the sample. We note
that only 115 of these 544 SNe Ia have been previously
photometrically classified, using host-galaxy spectra from the
SDSS-I/II surveys (S11; Hlozek et al. 2012). The data for all
SNe Ia in our final sample can be found in Appendix E.

5.1. Increased Scatter

The bottom panel of Figure 21 appears to show an increase
in the scatter of the HRs for the photometrically classified SNe
Ia (black points) compared to the spectroscopically confirmed
subsample (blue points). In Figure 22, we study this appar-
ent increased scatter by comparing the distribution of HRs
(∆µ = µobs−µWMAP) in the “spec Ia” subsample to our full pho-
tometric sample, assuming the latest WMAP+BAO+H0 best-fit
cosmological model (Jarosik et al. 2011). We show these resid-
uals in three redshift bins of width ∆z = 0.1 over the redshift
range 0.1 < z < 0.4, which corresponds to the range of red-
shifts where these two sets of SNe Ia significantly overlap. The
blue histograms show the “spec Ia” subsample (208), while the

16

Campbell et. al., 2013

Magoulas et. al., 2012

Empirical Distance 
Measurements
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Ø Look at large scale moments of the velocity: Bulk Flow (Dipole), Shear 
(Quadrupole), etc.,

Ø Reconstruct the dark matter density field from the PVs and infer matter 
power spectrum.

Ø Use redshifts/density field to reconstruct the velocities and compare to 
PV measurements.

Ø Compute the clustering of the redshifts and PVs: Correlation 
function/power spectrum

2MTF Velocity Power Spectrum 7

Figure 5. The errors in the log-distance ratios of the 2MTF data (cir-
cle points), colour-coded based on the log-distance ratio itself, and plot-
ted alongside the best-fit model (black line) used to generate the errors in
the mocks. The blue squares show the mean and standard deviation of the
data in bins of width cz = 1, 000 km s�1. The bottom panel shows these
standard deviations themselves as a function of redshift alongside a best-fit
model, which highlights how the scatter about our best-fit for the errors also
has a slight trend with redshift. We use a combination of these two best-fit
lines to estimate the mean and variance of the Gaussian PDF from which the
error on a galaxy with some redshift is generated. The colour-coding of the
points suggests that any correlation between the errors and the log-distance
ratios is small, and so is not accounted for in this work. The open triangles
show points removed by 4� clipping which are not used in the fits.

2014). Hence galaxies at higher redshift have lower intrinsic scatter
about the mean TF relation and smaller errors.

After obtaining the best-fit relationships the error on each
mock galaxy is generated as a random number drawn from a Gaus-
sian distribution with mean �(�d) and standard deviation ✏. The
errors are then used to perturb the measurements for each galaxy
from its true value, again assuming a Gaussian distribution.

3 THEORY AND MODELLING

3.1 Gaussian Theory

In order to extract a measurement of the velocity power spectrum
from the 2MTF data we use the method of Macaulay et al. (2012)
and Johnson et al. (2014). All modelling is done at z = 0, which is
close to the mean redshift of the 2MTF data. Our measurements of
the velocity field are in the form of line-of-sight peculiar velocities
s(x) = v(x) · r̂. Under the assumption that the velocities v(x) are
drawn from a Gaussian distribution with zero mean, the probability
of observing a set of line-of-sight peculiar velocities s is given by

L(✓) = 1
2⇡|C(✓)|exp

✓
�1
2
sTC(✓)�1s

◆
. (4)

The velocity covariance matrix C for this set of observations de-
pends on the underlying cosmological model and parameters ✓, and
the relative positions of the galaxies in the data vector s. For two
galaxies, i and j, we have Cij = hsi(xi)sj(xj)i. From Eq. 4 we
can calculate the likelihood of measuring our set of peculiar ve-
locities given some undelying cosmological model. Using Bayes’
theorem, we can then calculate the posterior distribution of a set

of cosmological parameters given our peculiar velocity dataset, the
likelihood in Eq. 4, and the priors and method given in Section 3.5.

Theoretical modelling of the correlations between velocities
in disparate locations is typically done in terms of the velocity
power spectrum Pvv(k, a), or the velocity-divergence power spec-
trum P✓✓(k, a). The relationship between the two on linear scales
at z = 0 is (e.g., Coles & Lucchin 1995; Eq.18.1.13)

Pvv(k) =

✓
H0f(k)

k

◆2

P✓✓(k). (5)

This relationship between the velocity power spectrum and veloc-
ity divergence power spectrum follows from Eq. 1. Our likelihood
evaluation requires the covariance matrix in real-space, but we can
write this in terms of the velocity power spectrum by first using
Fourier transforms to relate it to the peculiar velocities in k-space,

Cij(xi,xj) =

Z
d
3
k

(2⇡)3
e
ik·xi

Z
d
3
k
0

(2⇡)3
e
�ik0·xj hsi(k)s⇤j (k0)i,

(6)
then substituting the line-of-sight PVs for the underlying veloci-
ties and writing their variance in terms of the velocity power spec-
trum. Separating the resulting integral into radial and angular com-
ponents we find,

Cij(xi,xj) =
H

2
0

2⇡2

Z
dkf

2(k)P✓✓(k, a)W (xi,xj , k), (7)

where

W (k,xi,xj) =

Z
d
2
k

4⇡
e
ik·(xi�xj)(x̂i · k̂)(x̂j · k̂). (8)

Ma et al. (2011) give an analytic expression for the window func-
tion in terms of the comoving distance to the two galaxies, their
radial separation Aij = |ri � rj |, and the angle between them
↵ij = cos�1(x̂i · x̂j),

W (k,xi,xj) = 1/3[j0(kAij) � 2j2(kAij)]cos(↵ij)

+A
�2
ij j2(kAij)xixjsin

2(↵ij). (9)

Given a sample of galaxies with measured positions, redshifts
and peculiar velocities, we can:

(i) Adopt a given cosmological model to convert the galaxy co-
ordinates to cartesian coordinates, and evaluate the velocity diver-
gence power spectrum and the necessary prefactors in Eq. 7

(ii) Compute the covariance matrix for all possible galaxy pairs.
Evaluating the integral in Eq. 7 requires choosing appropriate inte-
gration limits. Theoretical models of the velocity divergence power
spectrum will break down at some non-linear scale. Including these
scales in the integral can bias results, so the range of scales we
choose to integrate over and fit against must be chosen appropri-
ately.

(iii) Calculate the likelihood for the cosmological model based
on the covariance matrix and the peculiar velocity measurements.

Iterating over these steps allows us to evaluate our posterior.
In practice, there are a few caveats with this approach. We first

require a way to incorporate measurement errors into our likelihood
calculation, which in most applications is not trivial. We also need
a method to calculate the velocity divergence power spectrum that
is accurate to the scales we wish to fit against. If this is not avail-
able, we can suppress non-linearities in the data and use a more lin-
ear model. Ideally, we try to achieve some balance between these
two options. Finally, we need to include marginalisation over the
effects of zero-point offsets, or a monopole, in the peculiar veloc-
ity measurements. Methods to include these are summarised in the
following sections.

MNRAS 000, 1–?? (2016)

On linear scales at z=0

Measured by PVs Calculate from density/theory

8 Using PVs for cosmology
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Using PVs for cosmology

Ø Look at large scale moments of the velocity: Bulk Flow (Dipole), Shear 
(Quadrupole), etc.,

Ø Reconstruct the dark matter density field from the PVs and infer matter 
power spectrum.

Ø Use redshifts/density field to reconstruct the velocities and compare to 
PV measurements.

Ø Compute the clustering of the redshifts and PVs: Correlation 
function/power spectrum

2MTF Velocity Power Spectrum 7

Figure 5. The errors in the log-distance ratios of the 2MTF data (cir-
cle points), colour-coded based on the log-distance ratio itself, and plot-
ted alongside the best-fit model (black line) used to generate the errors in
the mocks. The blue squares show the mean and standard deviation of the
data in bins of width cz = 1, 000 km s�1. The bottom panel shows these
standard deviations themselves as a function of redshift alongside a best-fit
model, which highlights how the scatter about our best-fit for the errors also
has a slight trend with redshift. We use a combination of these two best-fit
lines to estimate the mean and variance of the Gaussian PDF from which the
error on a galaxy with some redshift is generated. The colour-coding of the
points suggests that any correlation between the errors and the log-distance
ratios is small, and so is not accounted for in this work. The open triangles
show points removed by 4� clipping which are not used in the fits.

2014). Hence galaxies at higher redshift have lower intrinsic scatter
about the mean TF relation and smaller errors.

After obtaining the best-fit relationships the error on each
mock galaxy is generated as a random number drawn from a Gaus-
sian distribution with mean �(�d) and standard deviation ✏. The
errors are then used to perturb the measurements for each galaxy
from its true value, again assuming a Gaussian distribution.

3 THEORY AND MODELLING

3.1 Gaussian Theory

In order to extract a measurement of the velocity power spectrum
from the 2MTF data we use the method of Macaulay et al. (2012)
and Johnson et al. (2014). All modelling is done at z = 0, which is
close to the mean redshift of the 2MTF data. Our measurements of
the velocity field are in the form of line-of-sight peculiar velocities
s(x) = v(x) · r̂. Under the assumption that the velocities v(x) are
drawn from a Gaussian distribution with zero mean, the probability
of observing a set of line-of-sight peculiar velocities s is given by

L(✓) = 1
2⇡|C(✓)|exp

✓
�1
2
sTC(✓)�1s

◆
. (4)

The velocity covariance matrix C for this set of observations de-
pends on the underlying cosmological model and parameters ✓, and
the relative positions of the galaxies in the data vector s. For two
galaxies, i and j, we have Cij = hsi(xi)sj(xj)i. From Eq. 4 we
can calculate the likelihood of measuring our set of peculiar ve-
locities given some undelying cosmological model. Using Bayes’
theorem, we can then calculate the posterior distribution of a set

of cosmological parameters given our peculiar velocity dataset, the
likelihood in Eq. 4, and the priors and method given in Section 3.5.

Theoretical modelling of the correlations between velocities
in disparate locations is typically done in terms of the velocity
power spectrum Pvv(k, a), or the velocity-divergence power spec-
trum P✓✓(k, a). The relationship between the two on linear scales
at z = 0 is (e.g., Coles & Lucchin 1995; Eq.18.1.13)

Pvv(k) =

✓
H0f(k)

k

◆2

P✓✓(k). (5)

This relationship between the velocity power spectrum and veloc-
ity divergence power spectrum follows from Eq. 1. Our likelihood
evaluation requires the covariance matrix in real-space, but we can
write this in terms of the velocity power spectrum by first using
Fourier transforms to relate it to the peculiar velocities in k-space,

Cij(xi,xj) =

Z
d
3
k

(2⇡)3
e
ik·xi

Z
d
3
k
0

(2⇡)3
e
�ik0·xj hsi(k)s⇤j (k0)i,

(6)
then substituting the line-of-sight PVs for the underlying veloci-
ties and writing their variance in terms of the velocity power spec-
trum. Separating the resulting integral into radial and angular com-
ponents we find,

Cij(xi,xj) =
H

2
0

2⇡2

Z
dkf

2(k)P✓✓(k, a)W (xi,xj , k), (7)

where

W (k,xi,xj) =

Z
d
2
k

4⇡
e
ik·(xi�xj)(x̂i · k̂)(x̂j · k̂). (8)

Ma et al. (2011) give an analytic expression for the window func-
tion in terms of the comoving distance to the two galaxies, their
radial separation Aij = |ri � rj |, and the angle between them
↵ij = cos�1(x̂i · x̂j),

W (k,xi,xj) = 1/3[j0(kAij) � 2j2(kAij)]cos(↵ij)

+A
�2
ij j2(kAij)xixjsin

2(↵ij). (9)

Given a sample of galaxies with measured positions, redshifts
and peculiar velocities, we can:

(i) Adopt a given cosmological model to convert the galaxy co-
ordinates to cartesian coordinates, and evaluate the velocity diver-
gence power spectrum and the necessary prefactors in Eq. 7

(ii) Compute the covariance matrix for all possible galaxy pairs.
Evaluating the integral in Eq. 7 requires choosing appropriate inte-
gration limits. Theoretical models of the velocity divergence power
spectrum will break down at some non-linear scale. Including these
scales in the integral can bias results, so the range of scales we
choose to integrate over and fit against must be chosen appropri-
ately.

(iii) Calculate the likelihood for the cosmological model based
on the covariance matrix and the peculiar velocity measurements.

Iterating over these steps allows us to evaluate our posterior.
In practice, there are a few caveats with this approach. We first

require a way to incorporate measurement errors into our likelihood
calculation, which in most applications is not trivial. We also need
a method to calculate the velocity divergence power spectrum that
is accurate to the scales we wish to fit against. If this is not avail-
able, we can suppress non-linearities in the data and use a more lin-
ear model. Ideally, we try to achieve some balance between these
two options. Finally, we need to include marginalisation over the
effects of zero-point offsets, or a monopole, in the peculiar veloc-
ity measurements. Methods to include these are summarised in the
following sections.
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Figure 5. The errors in the log-distance ratios of the 2MTF data (cir-
cle points), colour-coded based on the log-distance ratio itself, and plot-
ted alongside the best-fit model (black line) used to generate the errors in
the mocks. The blue squares show the mean and standard deviation of the
data in bins of width cz = 1, 000 km s�1. The bottom panel shows these
standard deviations themselves as a function of redshift alongside a best-fit
model, which highlights how the scatter about our best-fit for the errors also
has a slight trend with redshift. We use a combination of these two best-fit
lines to estimate the mean and variance of the Gaussian PDF from which the
error on a galaxy with some redshift is generated. The colour-coding of the
points suggests that any correlation between the errors and the log-distance
ratios is small, and so is not accounted for in this work. The open triangles
show points removed by 4� clipping which are not used in the fits.

2014). Hence galaxies at higher redshift have lower intrinsic scatter
about the mean TF relation and smaller errors.

After obtaining the best-fit relationships the error on each
mock galaxy is generated as a random number drawn from a Gaus-
sian distribution with mean �(�d) and standard deviation ✏. The
errors are then used to perturb the measurements for each galaxy
from its true value, again assuming a Gaussian distribution.

3 THEORY AND MODELLING

3.1 Gaussian Theory

In order to extract a measurement of the velocity power spectrum
from the 2MTF data we use the method of Macaulay et al. (2012)
and Johnson et al. (2014). All modelling is done at z = 0, which is
close to the mean redshift of the 2MTF data. Our measurements of
the velocity field are in the form of line-of-sight peculiar velocities
s(x) = v(x) · r̂. Under the assumption that the velocities v(x) are
drawn from a Gaussian distribution with zero mean, the probability
of observing a set of line-of-sight peculiar velocities s is given by

L(✓) = 1
2⇡|C(✓)|exp

✓
�1
2
sTC(✓)�1s

◆
. (4)

The velocity covariance matrix C for this set of observations de-
pends on the underlying cosmological model and parameters ✓, and
the relative positions of the galaxies in the data vector s. For two
galaxies, i and j, we have Cij = hsi(xi)sj(xj)i. From Eq. 4 we
can calculate the likelihood of measuring our set of peculiar ve-
locities given some undelying cosmological model. Using Bayes’
theorem, we can then calculate the posterior distribution of a set

of cosmological parameters given our peculiar velocity dataset, the
likelihood in Eq. 4, and the priors and method given in Section 3.5.

Theoretical modelling of the correlations between velocities
in disparate locations is typically done in terms of the velocity
power spectrum Pvv(k, a), or the velocity-divergence power spec-
trum P✓✓(k, a). The relationship between the two on linear scales
at z = 0 is (e.g., Coles & Lucchin 1995; Eq.18.1.13)

Pvv(k) =

✓
H0f(k)

k

◆2

P✓✓(k). (5)

This relationship between the velocity power spectrum and veloc-
ity divergence power spectrum follows from Eq. 1. Our likelihood
evaluation requires the covariance matrix in real-space, but we can
write this in terms of the velocity power spectrum by first using
Fourier transforms to relate it to the peculiar velocities in k-space,

Cij(xi,xj) =

Z
d
3
k

(2⇡)3
e
ik·xi

Z
d
3
k
0

(2⇡)3
e
�ik0·xj hsi(k)s⇤j (k0)i,

(6)
then substituting the line-of-sight PVs for the underlying veloci-
ties and writing their variance in terms of the velocity power spec-
trum. Separating the resulting integral into radial and angular com-
ponents we find,

Cij(xi,xj) =
H

2
0

2⇡2

Z
dkf

2(k)P✓✓(k, a)W (xi,xj , k), (7)

where

W (k,xi,xj) =

Z
d
2
k

4⇡
e
ik·(xi�xj)(x̂i · k̂)(x̂j · k̂). (8)

Ma et al. (2011) give an analytic expression for the window func-
tion in terms of the comoving distance to the two galaxies, their
radial separation Aij = |ri � rj |, and the angle between them
↵ij = cos�1(x̂i · x̂j),

W (k,xi,xj) = 1/3[j0(kAij) � 2j2(kAij)]cos(↵ij)

+A
�2
ij j2(kAij)xixjsin

2(↵ij). (9)

Given a sample of galaxies with measured positions, redshifts
and peculiar velocities, we can:

(i) Adopt a given cosmological model to convert the galaxy co-
ordinates to cartesian coordinates, and evaluate the velocity diver-
gence power spectrum and the necessary prefactors in Eq. 7

(ii) Compute the covariance matrix for all possible galaxy pairs.
Evaluating the integral in Eq. 7 requires choosing appropriate inte-
gration limits. Theoretical models of the velocity divergence power
spectrum will break down at some non-linear scale. Including these
scales in the integral can bias results, so the range of scales we
choose to integrate over and fit against must be chosen appropri-
ately.

(iii) Calculate the likelihood for the cosmological model based
on the covariance matrix and the peculiar velocity measurements.

Iterating over these steps allows us to evaluate our posterior.
In practice, there are a few caveats with this approach. We first

require a way to incorporate measurement errors into our likelihood
calculation, which in most applications is not trivial. We also need
a method to calculate the velocity divergence power spectrum that
is accurate to the scales we wish to fit against. If this is not avail-
able, we can suppress non-linearities in the data and use a more lin-
ear model. Ideally, we try to achieve some balance between these
two options. Finally, we need to include marginalisation over the
effects of zero-point offsets, or a monopole, in the peculiar veloc-
ity measurements. Methods to include these are summarised in the
following sections.
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Figure 5. The errors in the log-distance ratios of the 2MTF data (cir-
cle points), colour-coded based on the log-distance ratio itself, and plot-
ted alongside the best-fit model (black line) used to generate the errors in
the mocks. The blue squares show the mean and standard deviation of the
data in bins of width cz = 1, 000 km s�1. The bottom panel shows these
standard deviations themselves as a function of redshift alongside a best-fit
model, which highlights how the scatter about our best-fit for the errors also
has a slight trend with redshift. We use a combination of these two best-fit
lines to estimate the mean and variance of the Gaussian PDF from which the
error on a galaxy with some redshift is generated. The colour-coding of the
points suggests that any correlation between the errors and the log-distance
ratios is small, and so is not accounted for in this work. The open triangles
show points removed by 4� clipping which are not used in the fits.

2014). Hence galaxies at higher redshift have lower intrinsic scatter
about the mean TF relation and smaller errors.

After obtaining the best-fit relationships the error on each
mock galaxy is generated as a random number drawn from a Gaus-
sian distribution with mean �(�d) and standard deviation ✏. The
errors are then used to perturb the measurements for each galaxy
from its true value, again assuming a Gaussian distribution.

3 THEORY AND MODELLING

3.1 Gaussian Theory

In order to extract a measurement of the velocity power spectrum
from the 2MTF data we use the method of Macaulay et al. (2012)
and Johnson et al. (2014). All modelling is done at z = 0, which is
close to the mean redshift of the 2MTF data. Our measurements of
the velocity field are in the form of line-of-sight peculiar velocities
s(x) = v(x) · r̂. Under the assumption that the velocities v(x) are
drawn from a Gaussian distribution with zero mean, the probability
of observing a set of line-of-sight peculiar velocities s is given by

L(✓) = 1
2⇡|C(✓)|exp

✓
�1
2
sTC(✓)�1s

◆
. (4)

The velocity covariance matrix C for this set of observations de-
pends on the underlying cosmological model and parameters ✓, and
the relative positions of the galaxies in the data vector s. For two
galaxies, i and j, we have Cij = hsi(xi)sj(xj)i. From Eq. 4 we
can calculate the likelihood of measuring our set of peculiar ve-
locities given some undelying cosmological model. Using Bayes’
theorem, we can then calculate the posterior distribution of a set

of cosmological parameters given our peculiar velocity dataset, the
likelihood in Eq. 4, and the priors and method given in Section 3.5.

Theoretical modelling of the correlations between velocities
in disparate locations is typically done in terms of the velocity
power spectrum Pvv(k, a), or the velocity-divergence power spec-
trum P✓✓(k, a). The relationship between the two on linear scales
at z = 0 is (e.g., Coles & Lucchin 1995; Eq.18.1.13)

Pvv(k) =

✓
H0f(k)

k

◆2

P✓✓(k). (5)

This relationship between the velocity power spectrum and veloc-
ity divergence power spectrum follows from Eq. 1. Our likelihood
evaluation requires the covariance matrix in real-space, but we can
write this in terms of the velocity power spectrum by first using
Fourier transforms to relate it to the peculiar velocities in k-space,

Cij(xi,xj) =

Z
d
3
k

(2⇡)3
e
ik·xi

Z
d
3
k
0

(2⇡)3
e
�ik0·xj hsi(k)s⇤j (k0)i,

(6)
then substituting the line-of-sight PVs for the underlying veloci-
ties and writing their variance in terms of the velocity power spec-
trum. Separating the resulting integral into radial and angular com-
ponents we find,

Cij(xi,xj) =
H

2
0

2⇡2

Z
dkf

2(k)P✓✓(k, a)W (xi,xj , k), (7)

where

W (k,xi,xj) =

Z
d
2
k

4⇡
e
ik·(xi�xj)(x̂i · k̂)(x̂j · k̂). (8)

Ma et al. (2011) give an analytic expression for the window func-
tion in terms of the comoving distance to the two galaxies, their
radial separation Aij = |ri � rj |, and the angle between them
↵ij = cos�1(x̂i · x̂j),

W (k,xi,xj) = 1/3[j0(kAij) � 2j2(kAij)]cos(↵ij)

+A
�2
ij j2(kAij)xixjsin

2(↵ij). (9)

Given a sample of galaxies with measured positions, redshifts
and peculiar velocities, we can:

(i) Adopt a given cosmological model to convert the galaxy co-
ordinates to cartesian coordinates, and evaluate the velocity diver-
gence power spectrum and the necessary prefactors in Eq. 7

(ii) Compute the covariance matrix for all possible galaxy pairs.
Evaluating the integral in Eq. 7 requires choosing appropriate inte-
gration limits. Theoretical models of the velocity divergence power
spectrum will break down at some non-linear scale. Including these
scales in the integral can bias results, so the range of scales we
choose to integrate over and fit against must be chosen appropri-
ately.

(iii) Calculate the likelihood for the cosmological model based
on the covariance matrix and the peculiar velocity measurements.

Iterating over these steps allows us to evaluate our posterior.
In practice, there are a few caveats with this approach. We first

require a way to incorporate measurement errors into our likelihood
calculation, which in most applications is not trivial. We also need
a method to calculate the velocity divergence power spectrum that
is accurate to the scales we wish to fit against. If this is not avail-
able, we can suppress non-linearities in the data and use a more lin-
ear model. Ideally, we try to achieve some balance between these
two options. Finally, we need to include marginalisation over the
effects of zero-point offsets, or a monopole, in the peculiar veloc-
ity measurements. Methods to include these are summarised in the
following sections.
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Table 3. Scale-dependent constraints on the
growth rate, fσ 8(k) at z = 0 from fitting the
velocity power spectrum of the ‘minimum er-
ror’ 2MTF data in different k-bins. Columns
give the upper and lower limits of each bin
and the corresponding fσ 8 measurement. The
upper and lower segments of the table give
the case for two and four k-bins, respectively.

k-range ( h Mpc−1) fσ 8(k, z = 0)

0.007–0.055 0.549+0.163
−0.130

0.055–0.150 0.399+0.161
−0.170

0.007–0.025 0.498+0.360
−0.266

0.025–0.055 0.610+0.268
−0.237

0.055–0.105 0.373+0.242
−0.250

0.105–0.150 0.439+0.251
−0.305

Figure 14. Best-fitting and 1σ errors on the growth rate in four k-bins and
for the three photometric bands and the ‘minimum error’ distances. In the top
panel we plot the growth rate constraints multiplied by our fiducial velocity
divergence power spectrum. The expectation assuming GR is plotted as the
dashed line. Our fits are sensitive to the power and growth rate averaged
across each bin. The corresponding GR expectation is shown as a solid
horizontal line. The position of the points relative to this line is arbitrary. In
the lower panel we plot the constraints on the growth rate itself, alongside
the scale-independent prediction from GR (dashed line). In all cases we find
results statistically consistent with GR.

fit, using the ‘minimum error’ 2MTF data and for the 3 individual
photometric bands, are also compared to our fiducial cosmology
in Fig. 14, where we plot the velocity divergence power spectrum
for our fiducial cosmology multiplied by the expected growth rate.
We find the preference for larger power in the k2-bin in all of our
photometric bands, but this remains consistent with statistical fluc-
tuations, and again there is no evidence in any of the bands for such
a preference on larger scales.

6 D I S C U S S I O N A N D C O N C L U S I O N

In this work we have presented measurements of the velocity power
spectrum using a set of 2062 measured peculiar velocities in the
completed 2MASS Tully Fisher Survey. We have performed a rig-
orous test of our fitting methodology using a set of eight realistic
mock 2MTF surveys. We identify the regimes in which our method
returns unbiased fits, and introduce a greater degree of flexibility

in our modelling than was used in previous studies. This is done
by accounting for and marginalizing over the effects of non-linear
RSD. Our method is able to produce unbiased fits to smaller scales
than is possible otherwise and than was used by previous studies,
and without the need for gridding or smoothing the data.

We test two different Gaussian distributed variables that can be
used to estimate the velocity power spectrum: magnitude fluctua-
tions, δm, which was the variable adopted in Johnson et al. (2014),
and which we also find produces reliable fits to the 2MTF data;
and the peculiar velocity estimator of Watkins & Feldman (2015).
We find that this latter estimator is also generally unbiased but does
seem to slightly underestimate the value of fσ 8 found in the mocks
regardless of the scales fit against. Comparing the true and esti-
mated peculiar velocities in the mocks reveals no obvious cause for
this and this discrepancy is not statistically significant. We decide
to use the δm variable in our fits as we find it to be superior for
the 2MTF data. Whether this estimator is none the less effective,
or even better, for estimating the bulk flow in the 2MTF data or for
use on other data sets remains an open question.

We verify that our fits are robust to the effects of a change in
cosmology or a velocity monopole. That said, this may only be
true because the constraining power of 2MTF is sufficiently weak.
For future PV surveys, such as Taipan (da Cunha et al. 2017) or
WALLABY (Johnston et al. 2008), with much greater constraining
power we may have to marginalize over the effects of different
cosmological models on the growth rate constraints.

Overall, we find best-fitting scale-dependent constraints on the
growth rate of structure at redshift zero that are consistent with a
scale-independent growth rate and the prediction of GR, when us-
ing both two and four k-bins. Assuming scale-independence we find
a value f σ8(z = 0) = 0.505+0.089

−0.079, also consistent with the predic-
tions of GR. This is a ∼16 per cent measurement of the growth rate,
comparable to the constraints using the 6dFGSv sample of ∼8800
galaxies (Johnson et al. 2014; ∼15 per cent) and the constraints us-
ing the 6dFGRS (Beutler et al. 2012; ∼13 per cent), which contains
over 100 000 galaxies. The fact that we obtain comparable results
using a smaller number of galaxies is a result of the higher number
density of local objects and better distance measurement compared
to 6dFGSv, and the fact that PV surveys are independent of the
effects of galaxy bias. Combining our growth rate measurements
with CMB data from Planck or WMAP9 we find γ = 0.45+0.10

−0.11, a
∼25 per cent measurement, consistent with GR. Combining with
weak lensing measurements from KiDS we find, γ = 0.38+0.12

−0.15,
which is consistent with GR at the level of ∼1.5σ .

The fact that our constraints on γ are only a factor of two larger
than state-of-the-art constraints combining a number of large-scale
structure, CMB and Type Ia supernovae measurements (Mueller
et al. 2016) highlights the strong tests of gravity that can be made
using PV surveys, both because of their independence from galaxy
bias and their low redshift. For future surveys containing larger
numbers of both redshifts and velocities, such as that planned with
WALLABY (Duffy et al. 2012; Koribalski 2012), these properties
will enable growth rate measurements comparable to, and even
surpassing, those that can be made using traditional Large-Scale
Structure surveys (Howlett et al. 2017).
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Figure 10. The best-fitting power-spectrum monopole (blue), quadrupole (red) and hexadecapole (black) models (lines) compared to the BOSS DR12
measurements (data points) in the three redshift bins used in this analysis. The measurements for the NGC are shown as filled circles, while the SGC data are
displayed as open squares. The solid line represents the fit to the NGC, while the dashed line shows the result for the SGC. The best-fitting models include
the irregular µ distribution effect as explained in equation (40), which is more prominent in the SGC since the volume is smaller. The NGC and SGC power
spectra are fitted simultaneously for fσ 8, α∥ and α⊥ , while we marginalize over different NGC and SGC nuisance parameters (b1σ 8, b2σ 8, N and σ v). As a
result, the best-fitting power spectra show different shapes for NGC and SGC, especially in the lowest redshift bin. The three lower panels show the residual
for the three multipoles separately.

Figure 11. Likelihood distributions for the three redshift bins of BOSS DR12. We show the results for the parameters α⊥ , α∥ and fσ 8. The blue contours use
the monopole, quadrupole and hexadecapole, while the red contours exclude the hexadecapole. The fitting range is k = 0.01–0.15 h Mpc− 1 for the monopole
and quadrupole, and k = 0.01–0.10 h Mpc− 1 for the hexadecapole. The numerical values are summarized in Table 3.

we effectively fix the background cosmological model. Fixing FAP

to the best-fitting value yields fσ 8 = 0.482 ± 0.037, 0.455 ± 0.038
and 0.410 ± 0.034 for the low- (zeff = 0.38), middle- (zeff = 0.51)
and high-redshift bin (zeff = 0.61), respectively.

9.3 Comparison to DR11 and other boss results

We compare these new results with our DR11 analysis (Beutler
et al. 2014a). Our DR11 study found a growth of structure constraint
of f(zeff)σ 8(zeff) = 0.419 ± 0.043 at zeff = 0.57, consistent with
our high-redshift measurement in this analysis of f(zeff)σ 8(zeff) =
0.410 ± 0.042 at zeff = 0.61. Our new uncertainties are slightly larger
compared to the DR11 result, which is caused by (1) the smaller
redshift range given that our high-redshift bin has a low-redshift
cut-off at 0.5 compared to 0.43 in the CMASS sample in Beutler et al.
(2014a), and (2) the fact that we use different mock catalogues

compared to our DR11 analysis to generate the covariance matrix,
which tend to result in larger uncertainties.

In Gil-Marin et al. (2016), the BOSS DR12 data have been anal-
ysed in Fourier space using the LOWZ and CMASS samples. They
found a growth of structure constraint of f(zeff)σ 8(zeff) = 0.395 ±
0.064 at zeff = 0.32 and f(zeff)σ 8(zeff) = 0.442 ± 0.037 at zeff = 0.57
for LOWZ and CMASS, respectively. The LOWZ result is significantly
(more than 1σ ) smaller than our constraint in the low-redshift bin,
which is f(zeff)σ 8(zeff) = 0.482 ± 0.053 at zeff = 0.38. There are
many potential sources for this difference: (1) our low-redshift bin
covers a redshift range of z = 0.2–0.5, which is slighter higher
compared to the redshift range of z = 0.2–0.43 of LOWZ; (2) the
additional data in our analysis (chunks 2–6) causes a difference
in the target selection mainly in the low-redshift bin; (3) Gil-Marin
et al. (2016) fit the power-spectrum monopole and quadrupole down
to kmax = 0.24 h Mpc− 1 compared to kmax = 0.15 h Mpc− 1 in our
analysis, which suggests that their constraint is dominated by high k

MNRAS 466, 2242–2260 (2017)Downloaded from https://academic.oup.com/mnras/article-abstract/466/2/2242/2712530
by The University of Western Australia user
on 06 August 2018
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Nonetheless this is still 
great for cosmology 
because it is proportional 
to the growth rate on 
large scales.

It can also be fit 
alongside the density 
power spectrum to 
overcome cosmic 
variance.
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Figure 8. Same as Fig. 7 but for the combined 2MTF and
6dFGSv data. The vertical dashed line is for the GR prediction
f�8 = 0.436.

Table 3. The best fit values and marginalised errors of f�8 and
b1�8 for the 2MTF, 6dFGSv and combined data. The number of
degrees of freedom is 52 (56 data points and 4 free parameters).

Surveys f�8 b1�8 �2/d.o.f

2MTF 0.440+0.130
�0.120 0.665+0.089

�0.074 83/52

6dFGSv 0.451+0.108
�0.092 1.117+0.097

�0.086 60/52

Combined 0.404+0.082
�0.081 1.221+0.086

�0.089 73/52

eterisation entirely, introducing additional (possibly scale-
dependent) dependencies into the growth rate of structure
(Eke et al. 1996; Wang & Steinhardt 1998; Linder & Cahn
2007). Hence one can use the above model to test the con-
sistency between GR and measurements of the growth rate
of structure by fitting for the value of �.

We perform such a test following Howlett et al. (2015c),

using the publicly available Planck likelihood chains7 to
place a prior on ⌦m(z) and to compute the theoretical f�8
as a function of z. We take into account the fact that di↵er-
ent values of � will change both the growth rate of structure
and the normalisation of the power spectrum �8 using

f (a)�8(a) = ⌦m(a)��8,0
Dgr (a⇤)

Dgr,0

D�(a)
D�(a⇤)

, (23)

where

a =
1

1 + z
, ⌦m(a) =

⌦m,0
a3E(a)2

, (24)

and the growth factors are given by

Dgr (a) =
H(a)
H0

π a

0

da
0

a03H(a0)3
,

D�(a)
D�(a⇤)

= exp
✓π a

a⇤
⌦m(a0)�dlna

0
◆
.

(25)

The Hubble parameter is given by

H(a) = H0

s
⌦m,0

a3 +
1 �⌦m,0 �⌦⇤,0

a2 +⌦⇤,0 (26)

where H0, ⌦m,0 and ⌦⇤,0 are the Hubble constant, matter
density parameter and dark energy density parameter of the
present-day Universe. The values for �8,0, ⌦m,0 and ⌦⇤,0 are
directly read in from the Planck chain. We use � =0.55 to
compute f (a)�8(a) from Eq. 23 and the corresponding pre-
diction is shown as the green solid curve in Fig. 9 alongside
our measurements.

In Fig. 9, we also compare the measured f�8, including
our f�8 measurements and those from a small selection of
recent surveys (Blake et al. 2011; Beutler et al. 2012; Carrick
et al. 2015; Howlett et al. 2017b; Alam et al. 2017; Huterer
et al. 2017; Adams & Blake 2017; Shi et al. 2018; Dupuy
et al. 2019), to the theoretical prediction. Although these
measurements are all largely in agreement with the GR pre-
diction, there is some hint of tension when they are all taken
together. To highlight this, we take the above measurements
and the Planck chain and perform a fit for �. The resulting
best fit is � = 0.60 ± 0.03, which is then converted back to a
range of f�8 values as a function of redshift and shown as
the light blue curve in Fig. 9. This highlights the preference
in the data for a slightly larger value of �, and hence weaker
gravitational model. We caution that the exact values for
the best-fit and error on � should not be taken too seri-
ously; there is significant overlap (and therefore covariance)
between many of the measurements we have used, which we
have not accounted for. The measurements cited are also
not a complete consensus of all growth rate measurements.
Nonetheless, Fig. 9 highlights the slight tension between cur-
rent measurements and GR which may be exacerbated or
resolved with the next generation of low redshift galaxy and
peculiar velocity surveys such as the Taipan Galaxy Sur-
vey (da Cunha et al. 2017), WALLABY (Koribalski 2012),
DESI (DESI Collaboration et al. 2016), SkyMapper (Wolf
et al. 2018) and LSST (Ivezic et al. 2008a; Howlett et al.
2017c).

7 The Planck likelihood chains are downloaded from
https://irsa.ipac.caltech.edu/data/Planck/release_2/

ancillary-data/HFI_Products.html. We used the chains in the
file base_plikHM_TTTEEE_lowTEB_lensing_1.txt.
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2 THE MOMENTUM FIELD

We start by defining the momentum field, following Park (2000), as the velocity field traced by discrete galaxies. Mathematically, we write
the momentum field, ⇢ as

⇢(r) = (1 + �g(r))v(r), (1)

where �g(r) and v(r) are the galaxy overdensity and the velocity field, respectively, at some location r. In a real survey, we are only able
to measure the radial peculiar velocities of galaxies u(r), which means that we are also only able to construct the radial momentum field
⇢||(r). Additionally, both the measured density and velocity fields contain non-linear contributions and are potentially biased tracers of the
true underlying density and velocity fields (although there is good reason to believe the latter is unbiased on large scales, Desjacques & Sheth
2010; Jennings et al. 2015; Chen et al. 2018). Nonetheless, the measured radial momentum field can still be used as a tracer of cosmology.

As with any field, we can consider measuring the radial momentum field on a grid and taking the Fourier transform. Given the nature of
the radial momentum field, we can simply do this by averaging the peculiar velocities of galaxies in cells using some interpolation scheme,
which can be corrected for after the Fourier transform has been taken. Note that, unlike when trying to estimate the velocity field directly,
the momentum field does not suffer from ‘zero-valued’ regions, i.e., parts of the gridded space where the velocity field is artificially set to
zero due to the absence of tracers. In the absence of any galaxies due to a survey selection function, the momentum field is both measured
and expected to be zero (because the overdensity is expected to be zero given our knowledge of the survey selection function), and so we are
able to obtain results without complex corrections or gridding schemes (such as those used in Jennings et al. 2011; Jennings 2012 or Koda
et al. 2014). However, we do have to modify our expectations for what we have measured; we have not measured the velocity field on the
grid, and so we are not able to measure the velocity power spectrum directly.

We can demonstrate what we have measured by correlating the radial momentum field in Fourier space. We can write the radial
momentum power spectrum as

(2⇡)3�D(k � k0)P p(k) = h(1 + �g(k))u(k)(1 + �g(k
0))u(k0)i

= hu(k)u(k0)i + hu(k)�g(k0)u(k0)i + h�g(k)u(k)u(k0)i + h�g(k)u(k)�g(k0)u(k0)i, (2)

which highlights the fact that the power spectrum of the radial momentum field is related to the velocity power spectrum (it is the first term
in the above equation), but is not fully equivalent. On linear scales, the velocity power spectrum dominates due to the 1/k2 scaling of the
velocity field relative to the density field. However, on non-linear scales higher order terms arise from the convolution of the density and
velocity fields at the same location. Although at first glance these appear to be three- and four-point functions, in practice they still only
contain two distinct locations, and so can be computed relatively simply using perturbation theory (Vlah et al. 2012, 2013; Okumura et al.
2014, see also Appendix A). The equivalence of the velocity and momentum power spectra on linear scales makes this measurement an
excellent tracer of gravity, whilst the density field dependence on small scales can be used to partially break the degeneracy between galaxy
bias and the growth rate of structure seen in measurements of the galaxy density power spectrum.

Applying this to a real survey introduces some complexity. Firstly, in order to assign the velocities to a grid, we need an estimate of their
position. This can be done one of three ways: using the measured redshifts and assuming a cosmological model to put the galaxies at their
redshift-space distance; using the redshifts and peculiar velocities to estimate the true distance to each galaxy; or using their positions inferred
from reconstructions of the density field using linear theory. In this work, we advocate the former. This is in contrast to the work of Park
(2000) and Park & Park (2006), but as we will show, the use of redshift-space positions (which effectively replaces �g is Eq. 2 with the redshift
space overdensity �

s
g and can also be modelled with perturbation theory) only changes the measured momentum power spectrum on small,

noise-dominated scales. Using instead the true distances (from the peculiar velocities or via reconstruction) could introduce considerable
measurement or systematic error which may be harder to theoretically model.

Secondly, to apply this to a real survey, we need to formally derive an estimator that accounts for the discrete sampling of the fields and
the survey geometry. This will be the focus of the next Section. It is also worth noting that extracting constraints from these measurements
does require accurate knowledge of the survey geometry and selection function. However, ensuring a well-defined selection function for
future peculiar velocity surveys will be extremely advantageous for a number of reasons beyond the requirements of the method developed
herein.

3 ESTIMATING THE REDSHIFT SPACE POWER SPECTRUM

Galaxies typically fall towards dense regions of the Universe and have 3-dimensional velocities, however the redshift-space and real-space
positions only differ due to the line-of-sight velocity. The net result of this on large scales is that an otherwise spherical distribution of galaxies
will appear squashed or extended along the line-of-sight; the transverse positions are unaffected, whilst the line-of-sight positions are moved
closer to the overdensities influencing the large scale motion of the galaxy. In terms of the clustering of galaxies, whereas in an isotropic and
homogeneous universe we might expect the correlation function or power spectrum to depend only on the separation between galaxies, the
use of redshift-space positions introduces a measurable difference along and transverse to the line-of-sight. The strength of this anisotropy is
proportional to the typical velocity of objects along of the line-of-sight and so can be used to determine the growth rate of structure.

Although the spherical symmetry of two-point clustering measurements is broken in redshift-space, they do retain symmetry about

MNRAS 000, 1–?? (2019)
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Figure 9. Measurements of the growth rate f�8, from the individual and combined 2MTF and 6dFGSv surveys as a function of redshift
z, compared to measurements from other surveys (stars). The blue filled square is the f�8 measured from the 2MTF survey; the purple
filled diamond is from the 6dFGSv survey; and the red filled circle is for the combined surveys. The green solid curve shows the Planck
⇤CDM prediction for f�8 using � = 0.55; the light-green shaded area indicates the errors. Other measurements are from B11 WiggleZ:
Blake et al. (2011) using WiggleZ (four red stars); B12: Beutler et al. (2012) using 6dFGRS; C15: Carrick et al. (2015) using 2M++,
SFI++ and A1; H17 2MTF: Howlett et al. (2017b) using 2MTF; A17 SDSS-III: Alam et al. (2017) using SDSS-III (three orange stars);
H17: Huterer et al. (2017) using JLA+CSP and SN+6dFGSv; A17: Adams & Blake (2017) using 6dFGS; S18: Shi et al. (2018) using
SDSS-DR7; D19: Dupuy et al. (2019) using Cosmicflows-3. The light-blue dashed curve is the best fit to the data points, with the
light-blue shaded region indicating the errors. The fit corresponds to � = 0.60± 0.03. The majority of the individual measurements are in
good agreement with the GR prediction, but a combined fit highlights a slight preference for higher � (weaker gravity).
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Future surveys will increase the total number of PVs by an order of magnitude 
whilst also increasing redshifts and data robustness:

These samples will improve our tests of cosmology at low redshift enormously

16 Future Surveys

Survey Redshifts (z < 0.1) Possible PVs

Current ????? 20,000 combined

Taipan Galaxy Survey 400,000 50,000 FP

WALLABY 400,000 30,000 TF

DESI 1,000,000 Up to 100,000 FP?

LSST+Followup ????? Up to 200,000 SNe? 
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17 Future Surveys

These surveys will allow 
for much more precise 
tests of scale-dependence

8 E. da Cunha et al.

culiar velocities obtained by the WALLABY survey (Koda
et al. 2014; Howlett et al. 2017).

3.2.3 Testing the cosmological model with peculiar
velocities

The Taipan survey will enable both a definitive cosmogra-
phy of the local density and velocity fields as well as pre-
cision constraints on the cosmological model. From the for-
mer, Taipan will determine in detail the structures contribut-
ing to the motion of the Local Group and the scale on which
this converges to its motion with respect to the CMB. In the
case of the latter, the peculiar velocities complement the red-
shift survey, and test the gravitational physics linking pecu-
liar velocities to the underlying mass fluctuations, which can
be modelled using linear theory and/or traced by the redshift
survey.

The observed motion of the Local Group with respect to
the local CMB rest frame arises from the attraction of the en-
tire surrounding mass distribution. At present the main con-
tributions are still not well established. The scale at which
these contributions converge to the CMB dipole and am-
plitude of the external bulk flow due to mass fluctuations
outside the local volume remain matters of debate (Feldman
et al. 2010; Lavaux et al. 2010; Bilicki et al. 2011; Nusser &
Davis 2011; Hoffman et al. 2015; Carrick et al. 2015). A key
goal of the Taipan peculiar velocity survey is to investigate
and definitively characterise the local bulk flow.

The 6dFGS peculiar velocity survey, with ⇠ 9, 000 pecu-
liar velocities, is the largest single survey so far undertaken
to understand the origin of this observed motion (Springob
et al. 2014; Scrimgeour et al. 2016). While this found that
the statistical measurement of galaxy bulk motions in the lo-
cal Universe is consistent with predictions from linear theory
(assuming the standard ⇤CDM model), there was evidence
for an external bulk flow in the general direction of the Shap-
ley supercluster; i.e. a component of the bulk flow that is
not predicted by the model velocity field interior to this vol-
ume as derived from redshift surveys (Springob et al. 2014).
By mapping the velocity field of galaxies with better preci-
sion over a larger volume than previous surveys (extending
well beyond the Shapley supercluster and out to z ⇠ 0.1),
Taipan will measure this external bulk flow with greater
precision and determine whether it is due to the Shapley
supercluster being more massive than currently estimated,
to other large structures at greater distance (e.g. the newly-
discovered Vela supercluster; Kraan-Korteweg et al. 2017),
or to unexpected deviations from standard ⇤CDM cosmol-
ogy (e.g. Mould 2017).

The volume and sample size provided by the Taipan pe-
culiar velocity survey will also allow, in principle, the mea-
surement of the bulk flow as a function of scale not just in a
single volume around the Local Group, but in tens of inde-
pendent volumes on scales up to ⇠100 Mpc/h. A more effec-
tive way to capture this information is through the galaxy ve-
locity power spectrum. This was computed directly by John-
son et al. (2014) using 6dFGSv (see also Macaulay et al.

Figure 6. Measurements and predictions for the scale-dependent growth
rate (in distinct k-bins) multiplied by the velocity divergence power spec-
trum for our fiducial cosmology, using only the peculiar velocity samples
of 6dFGS and Taipan. For 6dFGS, we plot both the measurements from
Johnson et al. (2014) and forecasts as solid and open points. The dashed
line shows the prediction from GR. The predictions/measurements are sen-
sitive to the power averaged across each bin (solid horizontal lines), but the
placement of the points within each bin is arbitrary. There is some discrep-
ancy between the 6dFGS measurements and forecasts, but in all bins we see
significant improvement in Taipan over the 6dFGS predictions, which we
expect to translate through to the measurements made with Taipan. Hence
Taipan will allow us to place tight constraints on the scale-dependence of
the low redshift growth rate, which is an important test of GR.

2012 for a similar parametric analysis). With a larger vol-
ume and denser sampling of the velocity field, the Taipan
peculiar velocity survey will provide a much more precise
velocity power spectrum over a wider range of scales, as
shown in Figure 6. This improved velocity power spectrum
will yield improved constraints on specific cosmological pa-
rameters that are degenerate when only the galaxy density
power spectrum is available (see Burkey & Taylor 2004;
Koda et al. 2014). In terms of constraining the cosmologi-
cal model, the key advantages of peculiar velocities are that:
(i) they trace the gravitational physics on very large scales
that are not accessible by standard redshift-space distortions
from galaxy redshift surveys, where modified gravity sce-
narios often show interesting deviations; (ii) the correlated
sample variance between the peculiar velocities and density
fields allows some quantities to be constrained with errors
below the sample-variance limit; and (iii) the availability of
both velocity and density field data is critical for marginalis-
ing over relevant nuisance parameters that would otherwise
impair redshift-space distortion fits. These issues are ex-
plored in relation to the Taipan survey by Koda et al. (2014)
and Howlett et al. (2017).

PASA (2017)
doi:10.1017/pas.2017.xxx

Da Cunha et. al., 2017
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Although rare, SNe IA 
are much better distance 
indicators. Typical 
distance errors could be 
8% compared to 20%
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Although rare, SNe IA 
are much better distance 
indicators. Typical 
distance errors could be 
8% compared to 20%

However, lots of work 
needs to be done to 
actually obtain these 
future samples and 
control for systematics.

19 LSST SNe forecasts
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Direct measurements of galaxy peculiar velocities allow us to 
test gravity in the nearby Universe, and improve over standard 
clustering techniques.
Ø Peculiar velocities can be obtained from distance indicators.
Ø In the local universe they enable precise measurements of the 

growth rate of structure and can be combined with/improve 
upon redshift measurements.

Ø They give good constraints from current surveys.
Ø They’ll be even better with future surveys and can add 

enormous value when combined with e.g., DESI.

If you have any questions about these slides or peculiar 
velocities in general, please get in touch!

Conclusions20


