A SEMICLASSICAL PATH TO THE COSMIC WEB

Cora Uhlemann

with Oliver Hahn, Cornelius Rampf & Mateja Gosenca

Cosmo from Home, August 2020

Intutt

Cosmology & Quantum Gravity

info: blogs.ncl.ac.uk/cosmology/

some colleagues here this week

COSMIC LABORATORY

beginning nearly uniform

today rich structure

CMB early universe

COSMIC WEB dark matter

COSMIC WEB galaxies

COSMIC LABORATORY

BIG QUESTIONS

dark matter

early universe dark energy & gravity

ANSWERS? nonlinear clustering

COSMIC WEB CHALLENGE

NUMERICAL N PARTICLES

small scales

limited power

limited sampling

ANALYTICAL 2 FIELDS

large scales

limited accuracy

limited features

COSMIC WEB CHALLENGE

NUMERICAL N PARTICLES

ANALYTICAL 2 FIELDS

1 WAVE FUNCTION

perturbation theory & initial conditions

CLASSICAL DYNAMICS

APPROXIMATE: SHOOT PARTICLES

follow initial gravitational potential

$$oldsymbol{v}(oldsymbol{q},a) = -oldsymbol{
abla} arphi_g^{\mathrm{ini}}(oldsymbol{q})$$
 Zel'dovich approx

$$\boldsymbol{x}(\boldsymbol{q},a) = \boldsymbol{q} - a \boldsymbol{\nabla} \varphi_g^{\mathrm{ini}}(\boldsymbol{q})$$

CLASSICAL DYNAMICS

FREE PROPAGATION

classical action: displacement × velocity

$$S_0(\boldsymbol{x}, \boldsymbol{q}, a) = \frac{1}{2}(\boldsymbol{x} - \boldsymbol{q}) \cdot \frac{\boldsymbol{x} - \boldsymbol{q}}{a}$$

background expansion

SEMICLASSICAL DYNAMICS

FREE PROPAGATION

transition amplitude

$$\psi_0(\boldsymbol{x}, a) = N \int d^3 q \exp\left[\frac{i}{\hbar}S_0(\boldsymbol{x}, \boldsymbol{q}, a)\right] \psi_0^{\text{ini}}(\boldsymbol{q})$$

Schrödinger equation

$$i\hbar\partial_a\psi_0 = -\frac{\hbar^2}{2}\nabla^2\psi_0$$

small parameter

free-particle approx Coles & Spencer '03

CU, Rampf & Hahn '20 arXiv:1812.05633

SINE-WAVE EXAMPLE

regularised density

RANDOM COSMO ICS

11

INTERACTIVE PROPAGATION

$$i\hbar\partial_a \psi = -\frac{\hbar^2}{2} \nabla^2 \psi + V_{\text{eff}}(\boldsymbol{x}, a) \psi$$

$$\uparrow$$

$$perturbative fluid: tidal effects$$

$$V_{\text{eff}}^{(2)}(\boldsymbol{x}) = \frac{3}{7} \nabla^{-2} \left[\left(\nabla^2 \varphi_{\text{g}}^{(\text{ini})} \right)^2 - \left(\nabla_i \nabla_j \varphi_{\text{g}}^{(\text{ini})} \right)^2 \right]$$

Schrödinger eq.

$$V_{\text{eff}}^{(2)}(\boldsymbol{x})$$

propagator
 $(S_0 + S_{\text{tid}})(\boldsymbol{x}, \boldsymbol{q}, a)$
 $S_{\text{tid}} \simeq -\frac{a}{2} \left[V_{\text{eff}}^{(2)}(\boldsymbol{q}) + V_{\text{eff}}^{(2)}(\boldsymbol{x}) \right]$
kick+drift+kick

PHASE-SPACE DISTRIBUTION

coarse-grained Wigner $\bar{f}_W[\psi, \hbar \to 0]$

$$f_{\mathrm{W}}(\boldsymbol{x},\boldsymbol{p}) = \int \! \frac{\mathrm{d}^{3} \boldsymbol{x}'}{(2\pi)^{3}} \exp\!\left[\frac{-\mathrm{i}\boldsymbol{p}\cdot\boldsymbol{x}'}{a^{3/2}}\right] \psi(\boldsymbol{x}+\frac{\hbar}{2}\boldsymbol{x}') \,\bar{\psi}(\boldsymbol{x}-\frac{\hbar}{2}\boldsymbol{x}')$$

phase-space info in wave function

LAGRANGIAN FLUID

displacement: 2LPT velocity beyond $v^L(q) = \dot{\xi}(q)$

$$\boldsymbol{v}(\boldsymbol{q}) = -\boldsymbol{\nabla}\varphi_g^{(\text{ini})} - a\boldsymbol{\nabla}V_{\text{eff}}^{(2)}$$

$$+\frac{a^2}{2}\boldsymbol{\nabla}\nabla V_{\text{eff}}^{(2)}\cdot\nabla\varphi_g^{(\text{ini})}$$

vorticity conserver

VORTICITY CONSERVATION

Eulerian $\boldsymbol{\nabla}_x \times \boldsymbol{v} = 0$

before shell-crossing

VORTICITY CONSERVATION

Lagrangian: Cauchy invariants $\varepsilon_{ijk} x_{l,j} \dot{x}_{l,k} = 0$

 $\begin{array}{l} \mathbf{2LPT} \\ = \mathcal{O}(a^2) \end{array}$

2PPT $= \mathcal{O}(a^3)$

EULERIAN FLUID

density & velocity

 $ho(\boldsymbol{x}) = |\psi(\boldsymbol{x})|^2$

application: Lyman- α

Porqueres et al. arXiv:2005.12928

$$\boldsymbol{v}(\boldsymbol{x}) = \frac{i\hbar}{2} \frac{\psi \boldsymbol{\nabla} \bar{\psi} - \bar{\psi} \boldsymbol{\nabla} \psi}{|\psi|^2}$$

Propagator PT ~ LPT in Eulerian space

PPT INITIAL CONDITIONS

ICS FOR EULERIAN HYDRO SIMS

2 fluids: DM & baryons relative density $\delta_{bc}^{\rm ini}=\delta_b^{\rm ini}-\delta_c^{\rm ini}$

neglect decaying modes

Rampf, CU, Hahn & Hahn, Rampf, CU *fresh on arXiv*

 \Rightarrow 1 propagator for 2 wave functions

see Oliver Hahn's Talk "Initial conditions for Cosmological Simulations: The next generation"

CONCLUSION

Large-scale structure = cosmic laboratory

Challenge: nonlinear clustering analytical methods & numerical simulations **Tool: semiclassical physics** correspondence classical \rightleftharpoons quantum Schrödinger eq. with effective potential **Propagator PT:** best of Lagrangian & Eulerian **Applications:** Lyman- α & initial conditions