Combination of cluster number counts and two-point correlations

Chun-Hao To, Elisabeth Krause, Heidi Wu, Eduardo Rozo, Daniel Gruen, Joe Derose, Risa Wechsler

To&Krause et al. 2020 (in prep.)

Motivation

- The abundance of galaxy clusters are sensitive to σ_8 and $\Omega_{
 m m}$.
- Accurate mass calibration is essential for cluster cosmology.

Motivation

- Bias of a galaxy cluster is sensitive to its mass.
- Measuring cluster mass:
 - ightharpoonup Cluster lensing $\propto b_c(M)$
 - $ightharpoonup ext{Cluster x galaxy} \propto b_c(M)b_g \ + \ ext{galaxy x galaxy} \ \propto b_q^2$
 - ightharpoonup Cluster clustering $\propto b_c^2(M)$

Outlines of the data vector

 We present a method of combining cluster number counts and two-point correlations.

Category	Data vector		
DES Y1 3x2pt	➤ Galaxy clustering (Wgg)		
Cluster related two-points	$ \begin{array}{ccc} \succ & \text{Cluster-galaxy cross correlation (w_{cg})} \\ \succ & \text{Cluster clustering (w_{cc})} \\ \succ & \text{Cluster lensing ($\gamma_t[c,s]$)} \\ \end{array} $		
Cluster Abundance	Cluster abundance (N)		

- Cluster samples: redMaPPer clusters
- ➤ Galaxy samples: redMaGiC galaxies

To et al. in prep.

Difference from DES Y1 cluster cosmology analysis

Analysis in comparison		
DES Y1 cluster analysis [DES collaboration 2020]	This analysis	Pros of this analysis
 Two step analysis: Weak lensing → mass + N → Cosmology 	 One step analysis: Data vector → Cosmology 	Easy to be combined with other cosmological probes (e.g. 3x2pt)
Small scale	Large scale, 2-halo regime	Safe from many systematics (e.g. baryonic effects, mis-centering)

However, using only large-scale information degrades cosmological constraints \rightarrow Saved by combining multiple two-point correlation functions (w_{cg} and w_{cc})

Simulation tests

Philosophy: Simulated galaxy catalogs are treated as plausible universes

Simulation setups

- The projection effect is one of the most important systematics for optical cluster cosmology.
- We create special versions of the Buzzard simulation.
 - → The range of projection effects in simulations well spans the data.

Simulation name **BuzzC BuzzA** BuzzB v1.9.2v1.9.2+2v1.9.8Buzzard version number RedMaPPer mode Fullrun/Halorun Fullrun/Halorun Fullrun/Halorun **Footprint** DES Y1 DES Y1 DES Y3 DES Y1 Survey depth DES Y1 DES Y3 Number of realizations 10 10

BuzzA: least amount of projection BuzzB: largest amount of projection

Stanford University

End-to-end simulation tests

 We perform the first end-to-end validation of a cluster abundance analysis on catalog-level simulations.

Large-scale selection effect biases

- Existence of correlations between richness and large-scale correlation functions at a fix cluster mass leads to an addition bias \rightarrow The selection-effect bias $(b_{\rm sel})$.
- Measurement in simulation:
 - $b_{\rm sel}$ = wcg [redmapper clusters] / wcg [random halos]
- On large scale, it is scale independent.
 - > Relatively simple model: normalization and mass dependence [2 free parameters]

- No significant systematics in the cosmological parameter inferences at DES Y1 accuracy. (Null hypothesis with p-value=3.8%, 7.1% and 2.6% in BuzzA, BuzzB, BuzzC respectively.)
 - ➤ Note that different versions (BuzzA and BuzzB) of the Buzzard simulation have the same dark matter distributions → cosmic variances are correlated.

- To check whether the 2 σ level discrepancy is due to flaws in the cluster analysis, we perform the 2x2pt (galaxy clustering + galaxy-galaxy lensing) analysis on BuzzA and BuzzC.
- 2x2pt and our analysis yield consistent cosmological constraints
 - → The deviation does not come from flaws in the cluster analysis.

- Analyzing systematic-contaminated theory data vector.
- Systematics:
- ➤ Cluster lensing one-halo term is 50 % lower than the expected value (DES Collaboration 2020.)
- Non-linear bias.
- Functional form of the richness-mass relation.
- None of the systematics can bias the cosmology constraints by more than 0.5 sigma.

To et al. in prep.

Prospects

- We run the same analysis on the DES Y1 data. [Result is still blinded]
- The method is expected to have a similar constraining power as the standard cluster analysis.

[Note: the area and redshift range of this analysis is smaller than the DES Y1 cluster analysis (DES collaboration 2020).]

To et al. in prep.

Conclusion

- We build a method of combining cluster abundance and two-point statistics.
- We validate the pipeline on three versions of Buzzard simulations, showing no significant systematics.
- We stress test the model by various systematics to show the robustness.

Highlight of this work:

- ✓ Safe from small-scale systematics (mis-centering, baryonic physics)
- ✓ Yielding competitive cosmological constraints.
- ✓ Relatively easy to combine with other cosmological probes.