CONSTRAINTS ON REHEATING TO SM PARTICLES DUE TO LARGE EFFECTIVE HIGGS BOSON MASS DURING INFLATION

Aliki Litsa,

with Katie Freese, Patrick Stengel,

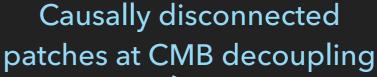
Evangelos Sfakianakis and Luca Visinelli

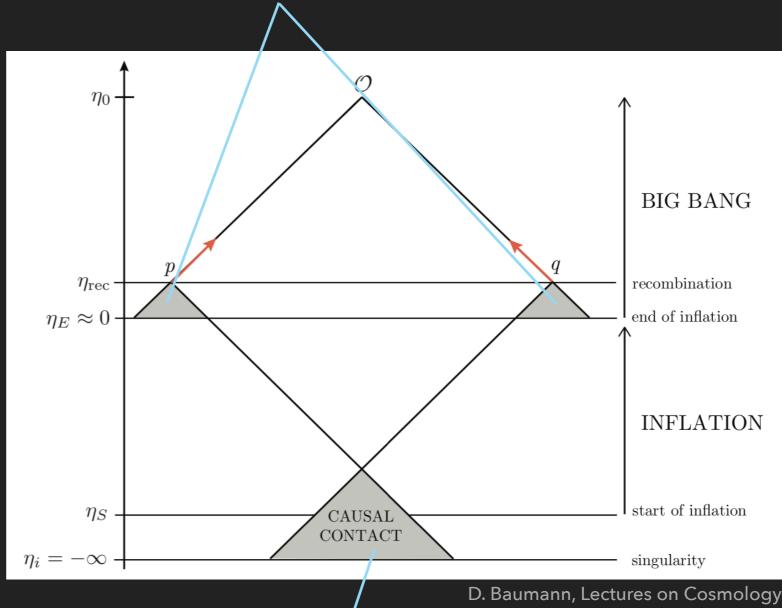
CONTENTS

- Introduction to inflation and Higgs dynamics
- Temperature fluctuations: Perturbative inflaton decay
- Temperature fluctuations: Resonant inflaton decay
- Non-gaussianity

WHY DO WE NEED INFLATION?

- A period of accelerated expansion in the Early Universe
- Solution to the horizon, flatness and monopole problems
- Seeds the observedCMB temperaturefluctuations

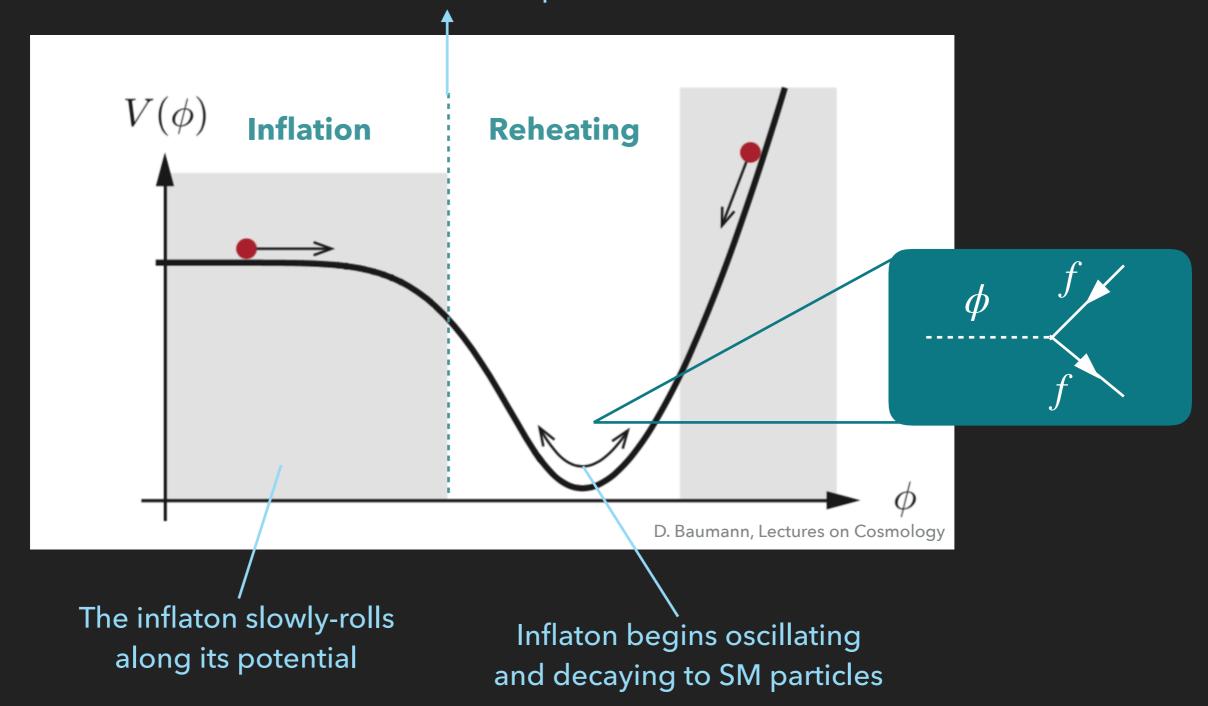




All Hubble patches initially in causal contact

SLOW-ROLL INFLATION

End of accelerated expansion



DURING INFLATION

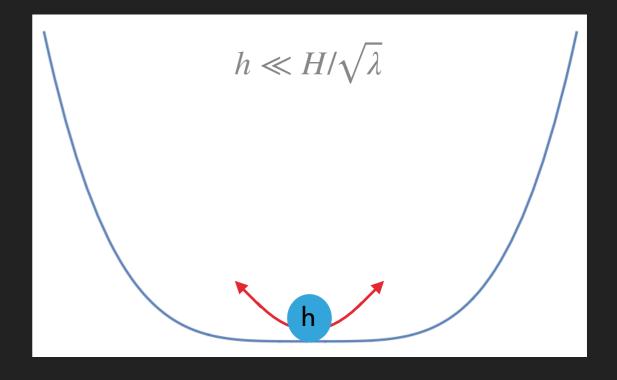
▶ Potential of the Higgs field for $h \gg v_{\text{EW}} \approx 246 \,\text{GeV}$:

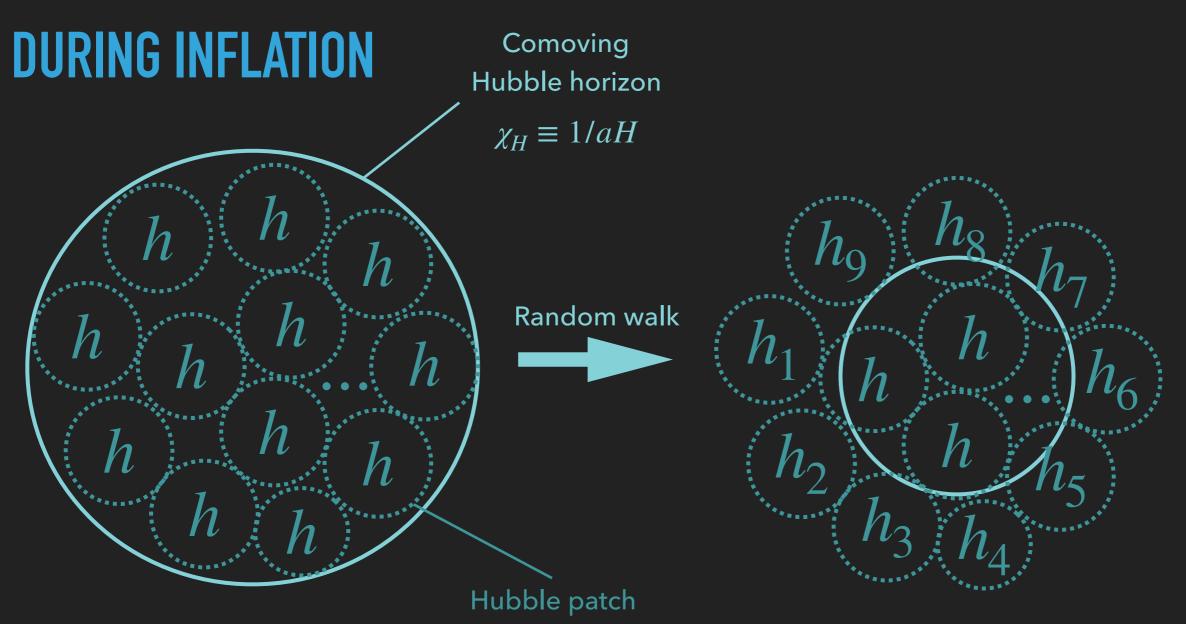
$$V(h) = \lambda \left(v_{\text{EW}}^2 h^2 + v_{\text{EW}} h^3 + h^4 \right) / 4 \approx \lambda h^4 / 4$$

Initially, the Higgs field is rolling down its potential V(h)

 $h\gtrsim H/\sqrt{\lambda}$

Quantum fluctuations of the Higgs condensate take over





Beginning of inflation:

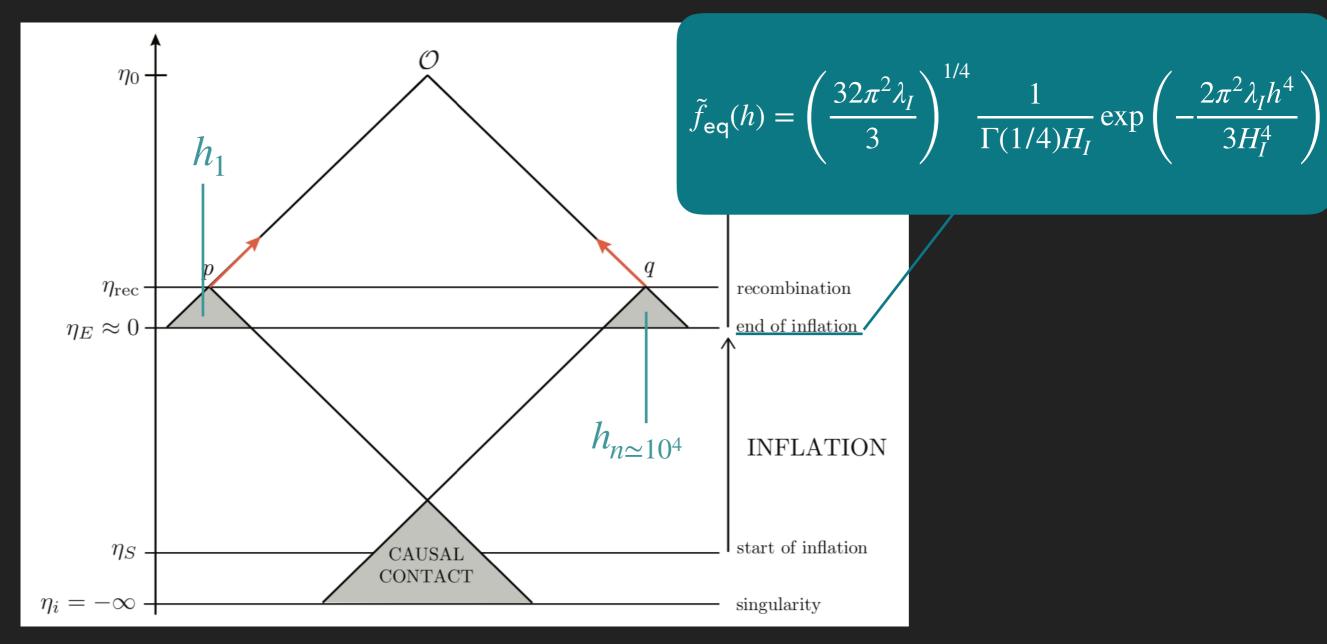
All patches inside the horizon and in causal contact, same Higgs VEV everywhere

During inflation:

Horizon shrinks, no causal contact, different Higgs VEV in each super-horizon patch

AFTER INFLATION

Fivery causally disconnected Hubble patch i, for $i \in \{1,...,n\}$, has a different value of the Higgs h_i , which obeys the the equilibrium PDF at the end of inflation

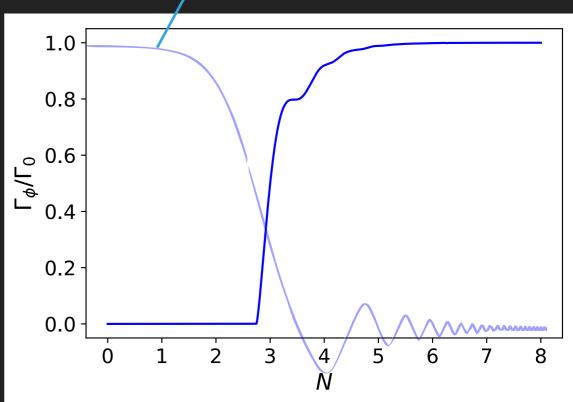


Adapted from D. Baumann, Lectures on Cosmology

- We assume a Yukawa-type coupling of the inflaton to SM fermions $\propto \phi f \bar{f}$
- The fermion mass at a patch i, is given by Yukawa couplings y to the Higgs as $m_f^{i^2} = y^2 h_i^2/2$

The inflaton decay rate to the fermion is: $\frac{h/h_I}{f}$

$$\Gamma_{\phi}^{i} = \Gamma_{0} \left(1 - \frac{4m_{f}^{i^{2}}}{m_{\phi}^{2}} \right)^{3/2} \Theta \left(m_{\phi}^{2} - 4m_{f}^{i^{2}} \right)$$

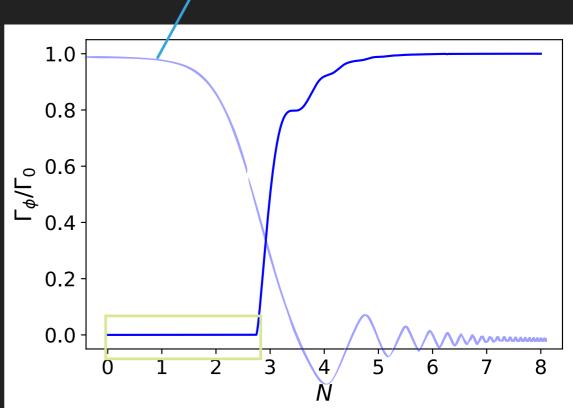


- We assume a Yukawa-type coupling of the inflaton to SM fermions $\propto \phi f \bar{f}$
- The fermion mass at a patch i, is given by Yukawa couplings y to the Higgs as $m_f^{i^2} = y^2 h_i^2/2$

 $m_{\phi} < 2m_f^t$

▶ The inflaton decay rate to the fermion is:

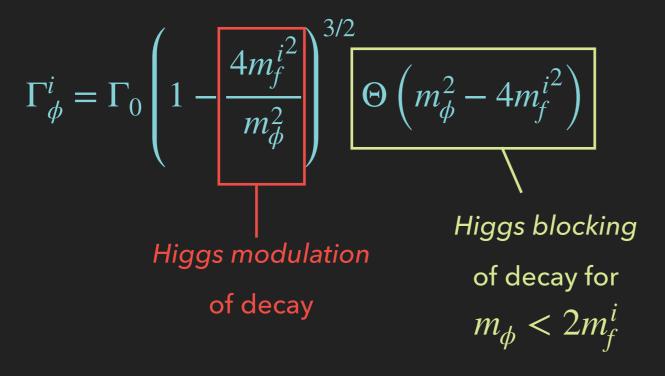
 $\Gamma_{\phi}^{i} = \Gamma_{0} \left(1 - \frac{4m_{f}^{i^{2}}}{m_{\phi}^{2}}\right)^{3/2} \boxed{\Theta\left(m_{\phi}^{2} - 4m_{f}^{i^{2}}\right)}$ Higgs blocking of decay for

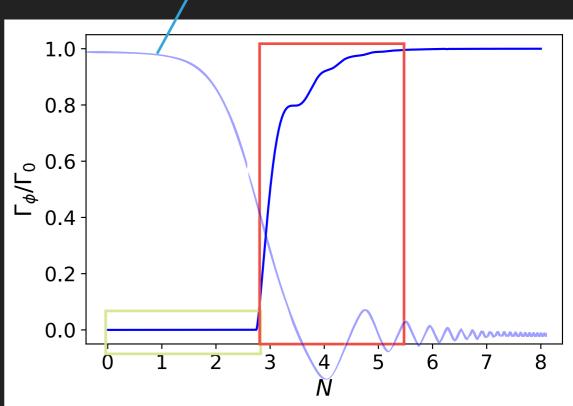


 h/h_I

- We assume a Yukawa-type coupling of the inflaton to SM fermions $\propto \phi f \bar{f}$
- The fermion mass at a patch i, is given by Yukawa couplings y to the Higgs as $m_f^{i^2} = y^2 h_i^2/2$

The inflaton decay rate to the fermion is:

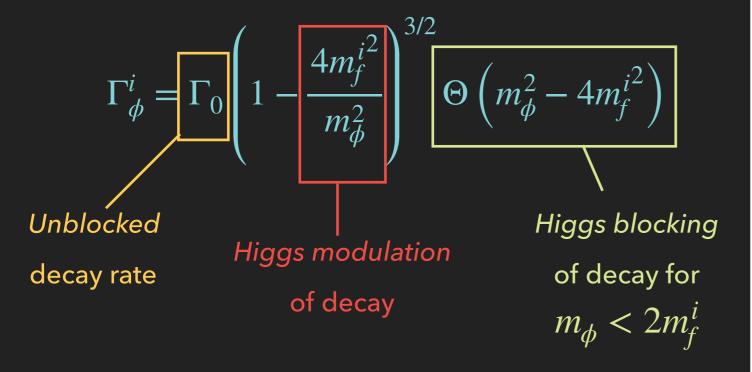


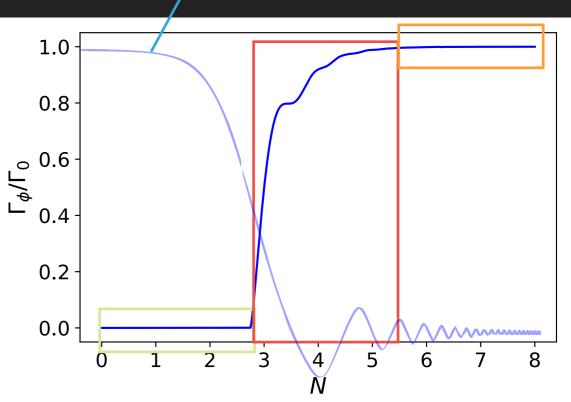


 h/h_I

- We assume a Yukawa-type coupling of the inflaton to SM fermions $\propto \phi f \bar{f}$
- The fermion mass at a patch i, is given by Yukawa couplings y to the Higgs as $m_f^{i^2} = y^2 h_i^2/2$

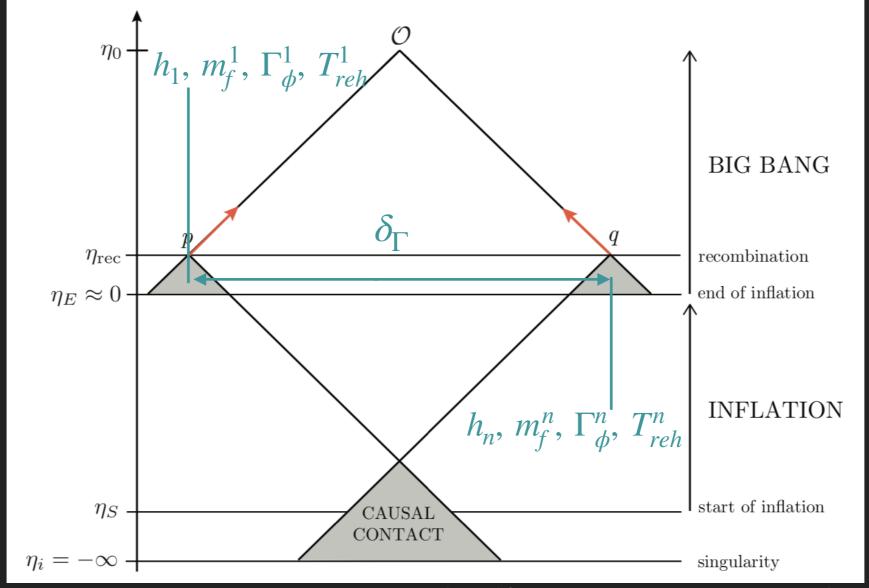
The inflaton decay rate to the fermion is: h/h_I





SPACE-DEPENDENT REHEAT TEMPERATURE

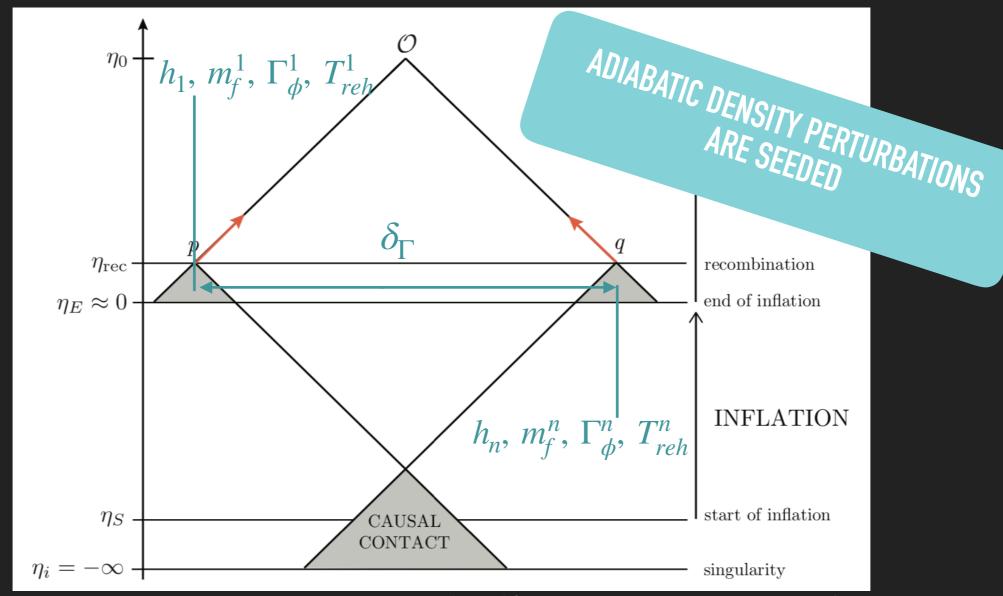
Reheating at each Hubble patch happens at a different temperature $T^i_{\it reh}$



Adapted from D. Baumann, Lectures on Cosmology

SPACE-DEPENDENT REHEAT TEMPERATURE

Reheating at each Hubble patch happens at a different temperature $T^i_{\it reh}$



Adapted from D. Baumann, Lectures on Cosmology

UNPERTURBED EQUATIONS

Energy density equations

 $\tilde{f}_{eq}(h; N=0)$ $h_1^I \ h_2^I \ \cdot$

End of inflation

$$d\rho_{\phi}^{i}/dN = -3\rho_{\phi}^{i} - (\Gamma_{\phi}^{i}/H^{i})\rho_{\phi}^{i}$$

$$d\rho_r^i/dN = -4\rho_r^i + (\Gamma_\phi^i/H^i)\rho_\phi^i$$

Higgs EoM

$$\frac{d^{2}h_{i}}{dN^{2}} + \left(3 + \frac{1}{H^{i}}\frac{dH^{i}}{dN}\right)\dot{h}_{i} + \frac{\lambda_{I}}{\left(H^{i}\right)^{2}}h_{i}^{3} = 0$$

Expansion dynamics

$$(H^i)^2 = \frac{8\pi G}{3} \left(\rho_\phi^i + \rho_r^i\right)$$

$$\frac{dH^i}{dN} = \sqrt{\frac{4\pi G}{3\left(\rho_\phi^i + \rho_r^i\right)} \left(\frac{d\rho_\phi^i}{dN} + \frac{d\rho_r^i}{dN}\right)}$$

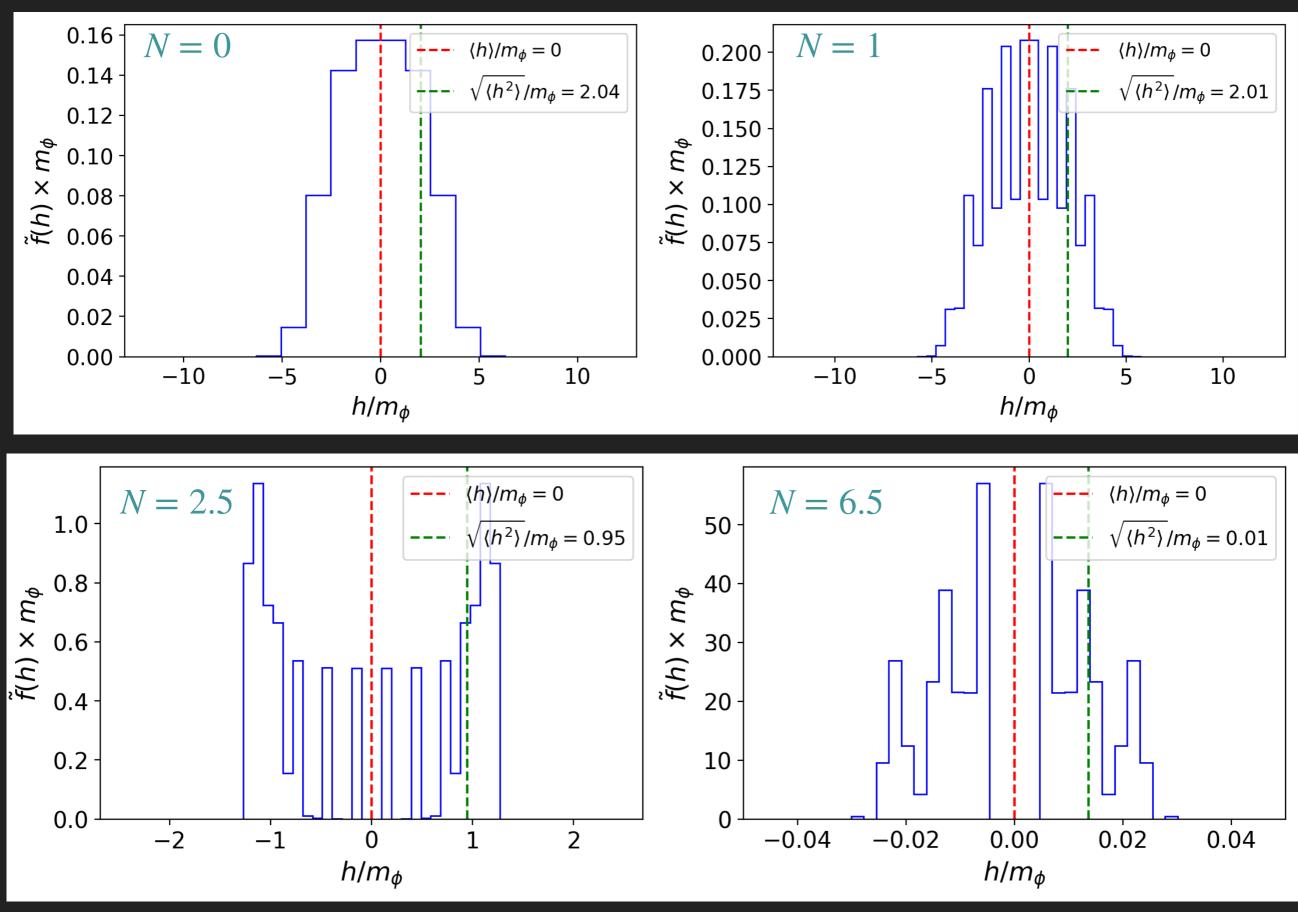
 $h_n(N)$

 $h_i(N)$

 $\tilde{f}(h;N)$

 $h_1(N)$ $h_2(N)$

N e-folds after inflation



y = 1, $\Gamma_0 = 10^{-1} \times m_{\phi}$, $\lambda_I = 10^{-3}$, $H_I = m_{\phi}$

DECAY RATE PERTURBATION

- We define a characteristic value of the Higgs VEV over all Hubble patches $\tilde{h}(N) \equiv \left(\int h^2 \tilde{f}(h;N) dh\right)^{1/2}$
- We define the average decay rate over all patches at the characteristic value \tilde{h} as

$$\bar{\Gamma}_{\phi} = \Gamma_0 \left(1 - \frac{2y^2 \tilde{h}^2}{m_{\phi}^2} \right)^{3/2} \Theta \left(m_{\phi}^2 - 2y^2 \tilde{h}^2 \right)$$

The characteristic decay rate perturbation, then, is

$$\delta_{\Gamma} \equiv \frac{\delta \Gamma_{\phi}}{\bar{\Gamma}_{\phi}} = \begin{cases} -\frac{6y^{2}h \, \delta h}{m_{\phi}^{2}} \left(1 - \frac{2y^{2}h^{2}}{m_{\phi}^{2}}\right)^{-1} \rightarrow -\frac{6y^{2}\tilde{h}^{2}}{m_{\phi}^{2}} \left(1 - \frac{2y^{2}\tilde{h}^{2}}{m_{\phi}^{2}}\right)^{-1} & \text{for } m_{\phi}^{2} > 4m_{f}^{2} \\ 0 & \text{for } m_{\phi}^{2} \leq 4m_{f}^{2} \end{cases}$$

PERTURBED EQUATIONS (DVALIET, AL 2003)

The perturbations in the inflation and radiation energy densities:

$$\frac{d\delta_{\phi}}{dN} = 3\frac{d\Phi}{dN} - \frac{\bar{\Gamma}_{\phi}}{H} \left(\delta_{\Gamma} + \Phi\right)$$

$$\frac{d\delta_{\phi}}{dN} = 3\frac{d\Phi}{dN} - \frac{\bar{\Gamma}_{\phi}}{H} \left(\delta_{\Gamma} + \Phi\right) \qquad \qquad \frac{d\delta_{r}}{dN} = 4\frac{d\Phi}{dN} + \frac{\bar{\rho}_{\phi}}{\bar{\rho}_{r}} \frac{\bar{\Gamma}_{\phi}}{H} \left(\delta_{\Gamma} + \Phi + \delta_{\phi} - \delta_{r}\right)$$

The background equations:

$$d\bar{\rho}_{\phi}/dN = -3\bar{\rho}_{\phi} - (\bar{\Gamma}_{\phi}/H)\bar{\rho}_{\phi}$$

$$d\bar{\rho}_r/dN = -4\bar{\rho}_r + (\bar{\Gamma}_\phi/H)\bar{\rho}_\phi$$

The gravitational potential perturbation:

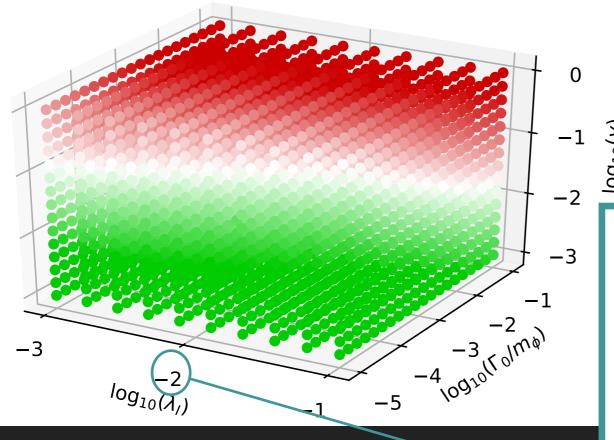
$$\frac{d\Phi}{dN} = -\Phi - \frac{4\pi G}{3H^2} \left(\bar{\rho}_{\phi} \delta_{\phi} + \bar{\rho}_{r} \delta_{r} \right)$$

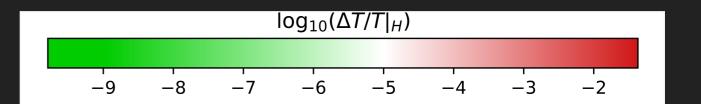
The Bardeen parameter perturbation:

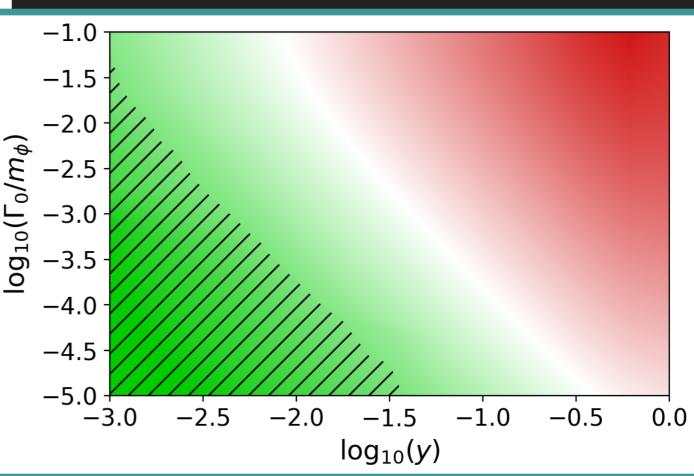
$$\zeta = -\Phi + \frac{\bar{\rho}_{\phi}\delta_{\phi} + \bar{\rho}_{r}\delta_{r}}{3\bar{\rho}_{\phi} + 4\bar{\rho}_{r}}$$

• We plug the $\bar{\Gamma}_{\phi}(N)$ and $\delta_{\Gamma}(N)$ calculated earlier and find $\zeta(N)$

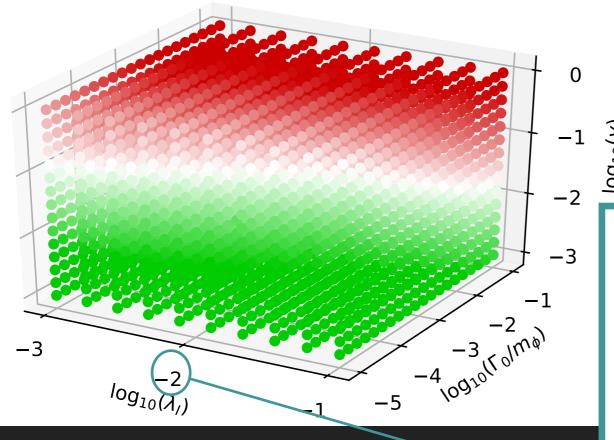
The temperature fluctuations are given by $\left. \frac{\Delta T}{T} \right|_{\mathsf{H}} = \frac{1}{3} \Phi_f = \frac{1}{5} \zeta_f$

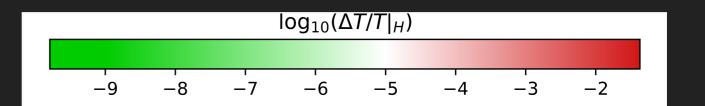


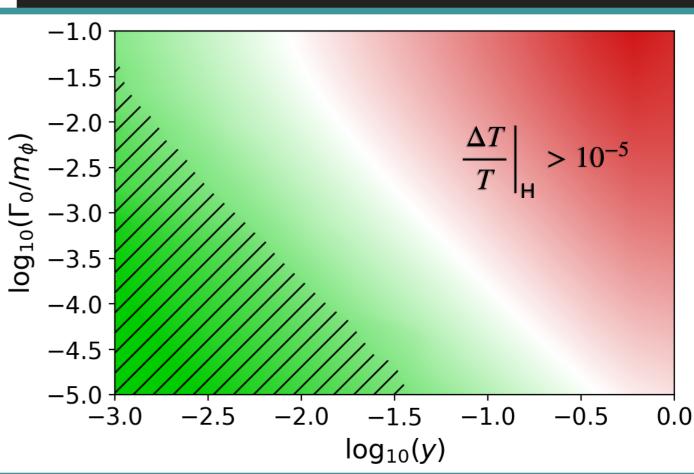




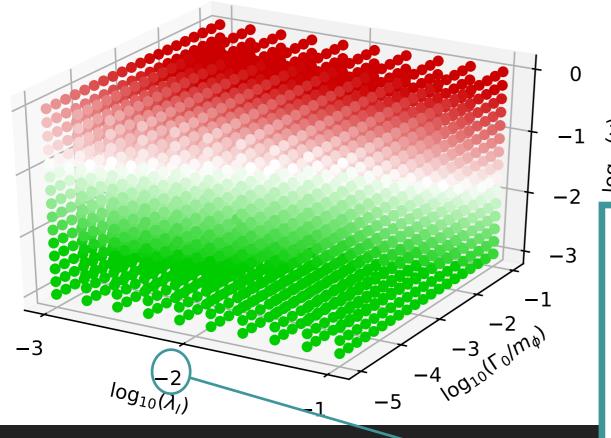
The temperature fluctuations are given by $\left. \frac{\Delta T}{T} \right|_{\mathsf{H}} = \frac{1}{3} \Phi_f = \frac{1}{5} \zeta_f$

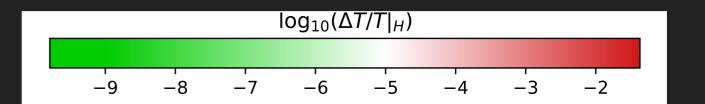


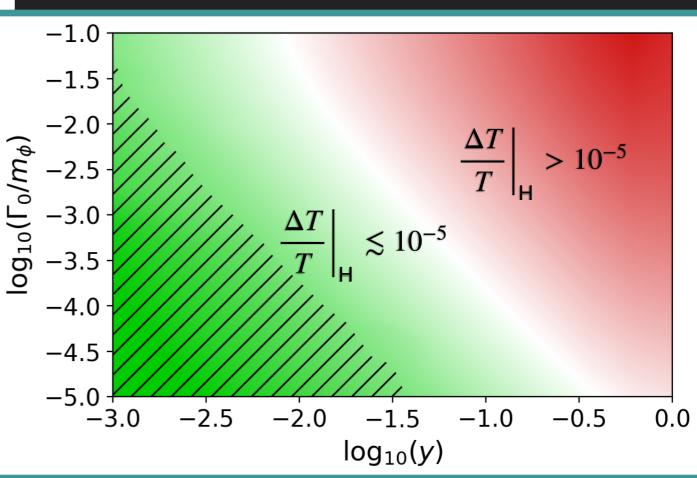




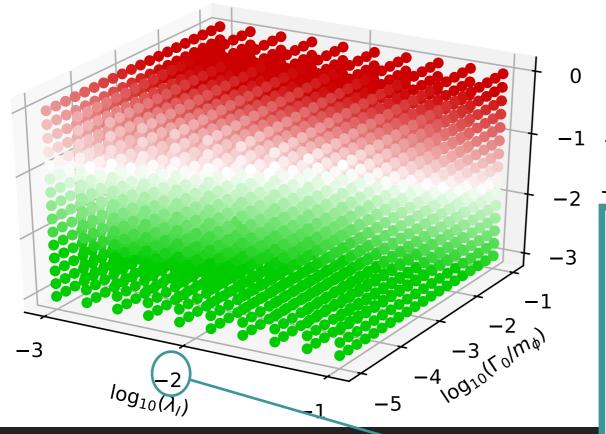
The temperature fluctuations are given by $\left. \frac{\Delta T}{T} \right|_{\mathsf{H}} = \frac{1}{3} \Phi_f = \frac{1}{5} \zeta_f$





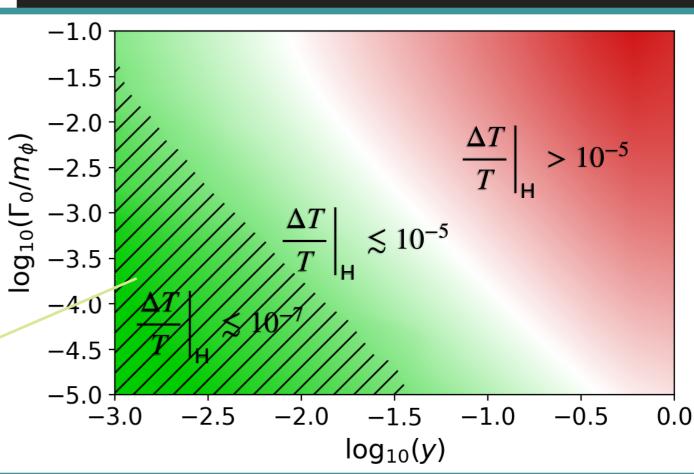


The temperature fluctuations are given by $\left. \frac{\Delta T}{T} \right|_{H} = \frac{1}{3} \Phi_f = \frac{1}{5} \zeta_f$



Region observations are not sensitive to





THEORY

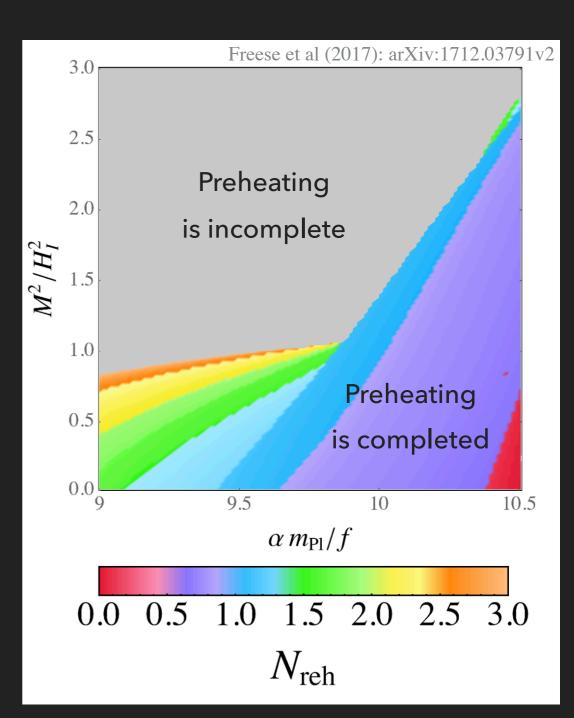
- Preheating via tachyonic resonant decays of the inflaton to gauge bosons
- The inflaton couples to U(1) gauge bosons via a Chern-Simons coupling

$$\propto \phi F^{\mu\nu} \tilde{F}_{\mu\nu} / 4f$$

The gauge boson gets its mass via a gauge coupling g to the Higgs:

$$M = g |h|/2$$

We cannot define a decay rate like in the perturbative case!



THEORY

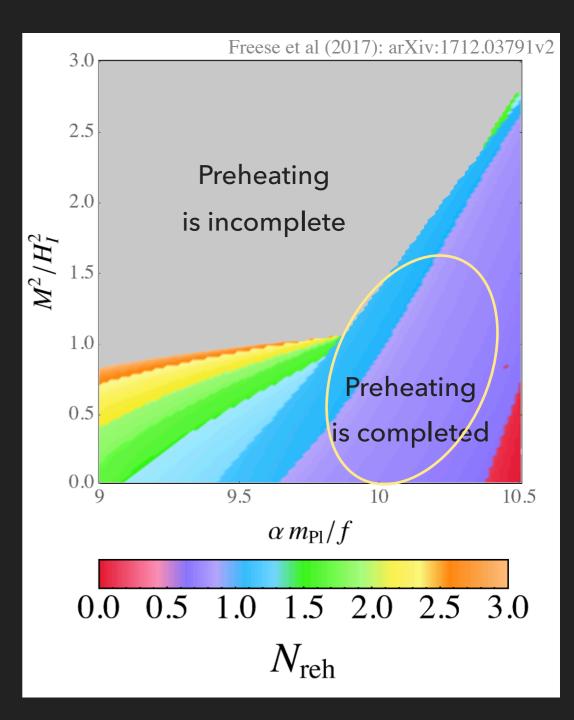
- Preheating via tachyonic resonant decays of the inflaton to gauge bosons
- The inflaton couples to U(1) gauge bosons via a Chern-Simons coupling

$$\propto \phi F^{\mu\nu} \tilde{F}_{\mu\nu} / 4f$$

The gauge boson gets its mass via a gauge coupling g to the Higgs:

$$M = g |h|/2$$

We cannot define a decay rate like in the perturbative case!



* We choose $f = 0.1 m_{\rm Pl}$

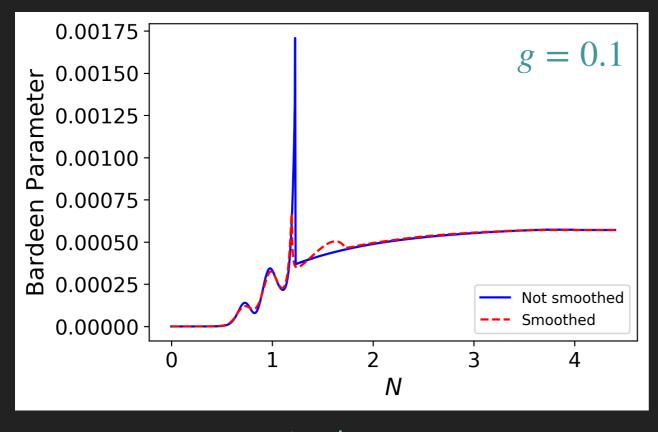
METHOD

- \blacktriangleright We again start from a distribution of n Higgs values h_i across n different Hubble patches
- \blacktriangleright Each Hubble patch, then, is characterized by a different gauge boson mass $\,M_i$
- We solve the EoM of the gauge field at each patch and derive the inflaton an radiation energy densities at each patch, at every point in time $ho_{\phi}^i(N),
 ho_r^i(N)$
- The energy density background and perturbations can then be defined as:

$$\bar{\rho}_{\phi/r}(N) \equiv \langle \rho_{\phi/r}(N) \rangle$$
 $\delta_{\phi/r} \equiv \sqrt{\langle \rho_{\phi/r}^2(N) \rangle} / \bar{\rho}_{\phi/r}(N)$

RESULTS

We plug the background and perturbation functions into the gravitational potential and Bardeen parameter equations for $f = 0.1 \, m_{\rm Pl}$

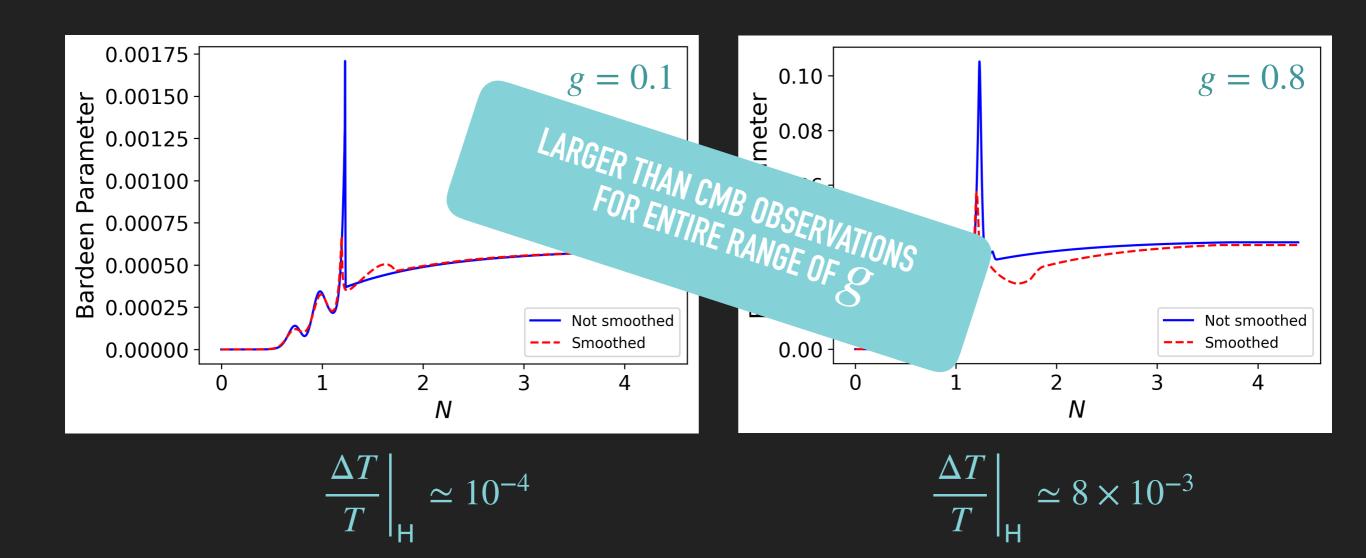


$$\left. \frac{\Delta T}{T} \right|_{\mathsf{H}} \simeq 10^{-4}$$

$$\left. \frac{\Delta T}{T} \right|_{\mathsf{H}} \simeq 8 \times 10^{-3}$$

RESULTS

We plug the background and perturbation functions into the gravitational potential and Bardeen parameter equations for $f = 0.1 \, m_{\rm Pl}$



PATCH-BY-PATCH METHOD

Energy density equations

 $\tilde{f}_{eq}(h; N=0)$

 h_2^I

 h_1^I

$$d\rho_{\phi}^{i}/dN = -3\rho_{\phi}^{i} - (\Gamma_{\phi}^{i}/H^{i})\rho_{\phi}^{i}$$

$$d\rho_r^i/dN = -\,4\rho_r^i + (\Gamma_\phi^i/H^i)\rho_\phi^i$$

Higgs EoM

$$\frac{d^{2}h_{i}}{dN^{2}} + \left(3 + \frac{1}{H^{i}}\frac{dH^{i}}{dN}\right)\dot{h}_{i} + \frac{\lambda_{I}}{\left(H^{i}\right)^{2}}h_{i}^{3} = 0$$

Expansion dynamics

$$\left(H^{i}\right)^{2} = \frac{8\pi G}{3} \left(\rho_{\phi}^{i} + \rho_{r}^{i}\right)$$

$$\frac{dH^{i}}{dN} = \sqrt{\frac{4\pi G}{3\left(\rho_{\phi}^{i} + \rho_{r}^{i}\right)}} \left(\frac{d\rho_{\phi}^{i}}{dN} + \frac{d\rho_{r}^{i}}{dN}\right)$$

$$\tilde{g}(\rho_{\phi}; N) \ \tilde{g}(\rho_r; N)$$

$$ho_{\phi}^{1}(N)$$
 $\rho_{r}^{1}(N)$ $\rho_{r}^{2}(N)$

$$\rho_{\phi}^2(N)$$

$$\rho_{\phi}^{i}(N)$$

$$\rho_r^{\iota}(N)$$

$$\rho_{\phi}^{n}(N)$$

$$\rho_{\kappa}^{n}(N)$$

N e-folds after inflation

End of inflation

PATCH-BY-PATCH METHOD

$$\tilde{g}(\rho_{\phi/r};N)$$

$$\rho_{\phi/r}^1(N)$$

$$\rho_{\phi/r}^2(N)$$

$$ho_{\phi/r}^i(N)$$

We use the definitions of the energy density background and perturbations

$$\bar{\rho}_{\phi/r}(N) \equiv \langle \rho_{\phi/r}(N) \rangle$$

$$\delta^i_{\phi/r} \equiv \left(\rho^i_{\phi/r}(N) - \bar{\rho}_{\phi/r}(N) \right) / \bar{\rho}_{\phi/r}(N)$$

Perturbation PDFs with time

$$\tilde{g}(\delta_{\phi/r};N)$$

$$\tilde{g}_{\phi/r};N)$$
 $\tilde{g}(\Phi;N)$

$$\delta_{\phi/r}^2(N)$$

 $\delta_{\phi/r}^1(N)$

$$\delta^i_{\phi/r}(N)$$

$$\delta^n_{\phi/r}(N)$$

$$\Phi^1(N)$$

$$\Phi^2(N)$$

$$\Phi^i(N)$$

$$\Phi^n(N)$$
 $\Phi^n(N)$

$$\zeta^1(N)$$

 $\tilde{g}(\zeta;N)$

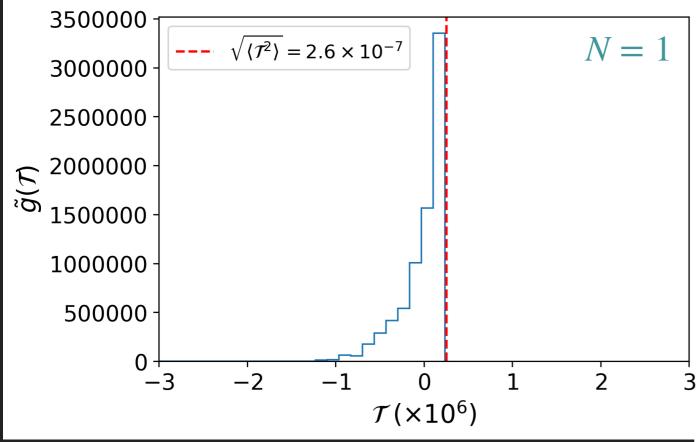
$$(N)$$
 $\zeta^2(N)$

$$\zeta^{i}(N)$$

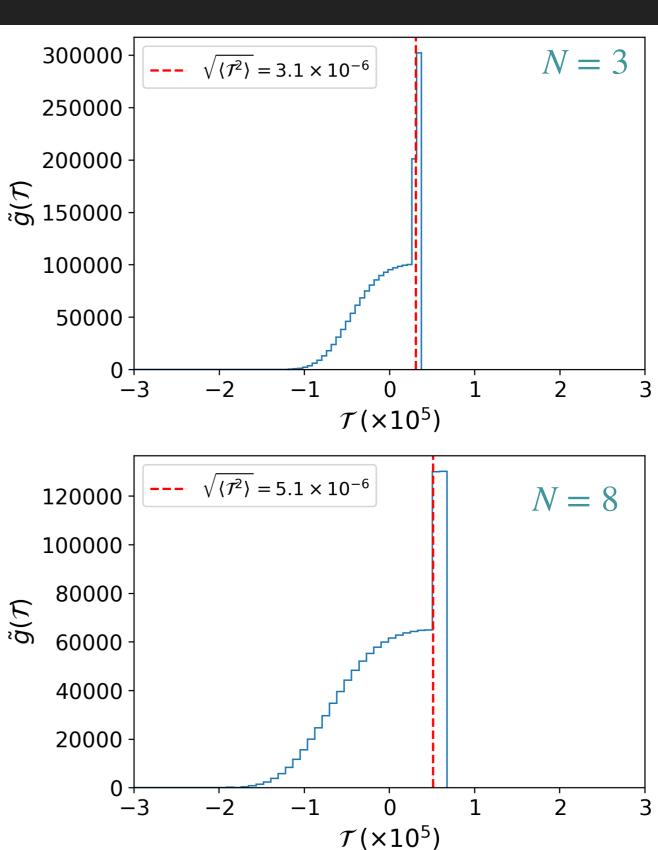
$$\zeta^n(N)$$

PATCH-BY-PATCH METHOD

$$\mathcal{T}^i \equiv \frac{\Delta T}{T} \bigg|_{}^i = \frac{\zeta^i}{5}$$



$$y = 10^{-2}$$
, $\Gamma_0 = 10^{-2} \times m_{\phi}$, $\lambda_I = 10^{-2}$, $H_I = m_{\phi}$



f_{NL} calculation

Planck defines non-gaussianity as:

$$\tilde{g}(\mathcal{T}) = \tilde{g}_G(\mathcal{T}) + f_{NL} \left(\tilde{g}_G^2(\mathcal{T}) - \langle \tilde{g}_G^2(\mathcal{T}) \rangle \right)$$

▶ The skewness of the temperature fluctuations spectrum is:

$$\mathcal{S}_{H} = \langle \tilde{g}^{3} \left(\mathcal{T} \right) \rangle$$

Non-gaussianity in terms of the skewness is:

$$f_{NL} \approx \frac{\delta_{\mathsf{H}}}{6 \left(\Delta T/T|_{\mathsf{CMB}}\right)^4}$$

- We assume that NG is dominated by reheating rather than SR dynamics
- We calculate NG in the green parameter space which is allowed based on temperature fluctuations. According to Planck $\frac{\Delta T}{T}\Big|_{CMB} \approx 10^{-5}$.

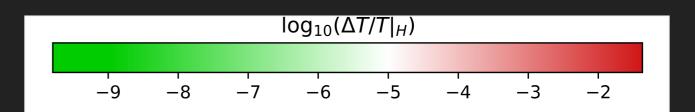
CMB BOUNDS

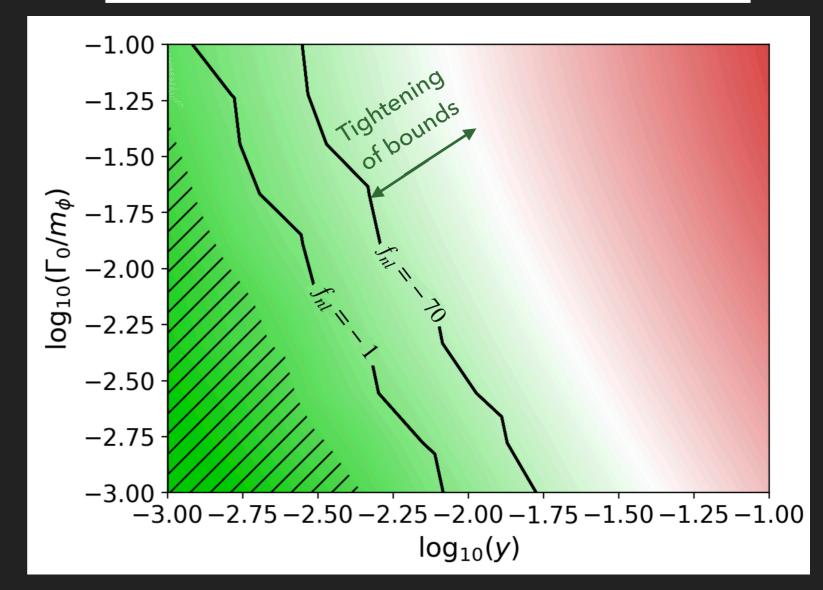
Planck's bounds on non-gaussianity are:

$$-6 \le f_{NL} \le 5.1$$

Since our approach
does not take smaller
scales into account,
the bounds will ease
by a factor of ~ 10 to:

$$|f_{NL}| \le 70$$





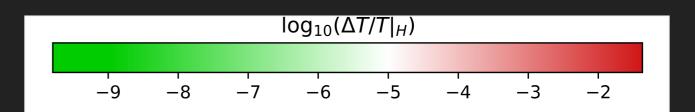
CMB BOUNDS

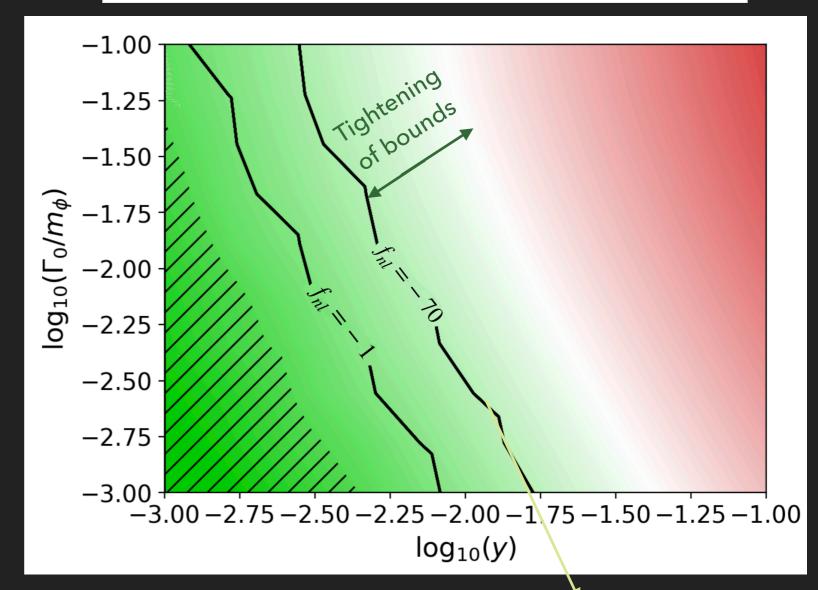
Planck's bounds on non-gaussianity are:

$$-6 \le f_{NL} \le 5.1$$

Since our approach
does not take smaller
scales into account,
the bounds will ease
by a factor of ~ 10 to:

$$|f_{NL}| \le 70$$





Lower bound from Planck /larger scales

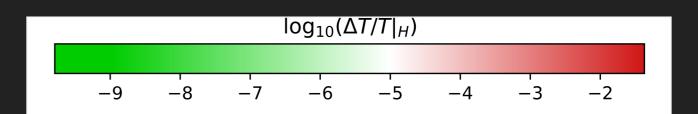
CMB BOUNDS

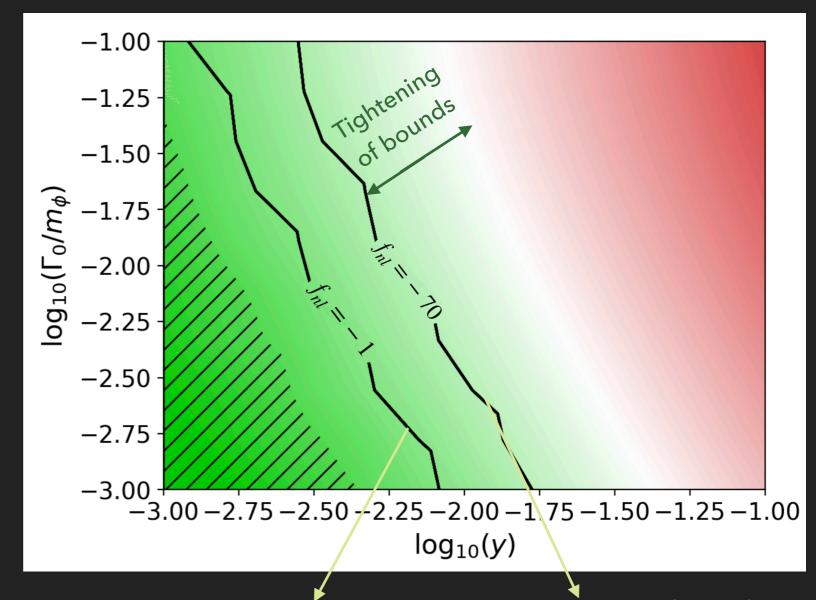
Planck's bounds on non-gaussianity are:

$$-6 \le f_{NL} \le 5.1$$

Since our approach
does not take smaller
scales into account,
the bounds will ease
by a factor of ~ 10 to:

$$|f_{NL}| \le 70$$





Upper bound from observability of NG

Lower bound from Planck /larger scales

CONCLUSIONS

- The Higgs as a light spectator field during inflation can cause reheating to SM particles to be space-dependent
- This space-dependence results in large Higgs-induced temperature fluctuations and non-gaussianity
- By comparing with Planck observations we can constrain the SM parameter space
- The bounds placed on the reheat temperatures of SM particles are tighter for reheating to heavier particles
- We exclude resonant decays (preheating) of the inflaton to SM Higgsed gauge bosons
- > Future study of scale-dependencies can provide more accurate results

THANK YOU