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Weak lensing cosmology
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Light from distant galaxies passes the same 
foreground structure. 
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Sensitive to the amount of clumpy matter: 

S8 = σ8 (Ωm/0.3)0.5

Troxel et al. 2019 
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see Ami Choi’s talk! 

We measure the correlation of the 
shapes of source galaxy pairs [i,j] as a 
function of angular radius and in source 
redshift bins or tomographically. 



Cosmic shear cosmology in 2020 
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Troxel et al. 2019 Hamana et al. 2020 Asgari et al. 2020 



Lensing without borders: 
Are lensing datasets consistent?

Leauthaud & Amon et al. in prep.  

Lensing without borders is a blind comparison of weak 
lensing surveys. 

Use galaxy-galaxy lensing, , with BOSS: In the 
absence of systematics, signal only depends on BOSS 
galaxy properties, not the lensing survey used. 

ΔΣ

First empirical estimates of systematic errors! 

Results consistent with values reported by surveys.
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Detect a trend in lensing amplitude with lensing survey depth, zsource.                 
Leading lensing systematic: redshift calibration / blending ? 



Some leading systematics:

Redshift estimation Shear calibration and blending Intrinsic alignments



Redshift estimation

1. Mitigate biases in the colour-redshift relation due to selection effects or photo-z outliers 

2. Characterise the full uncertainty, including any flux calibration errors, sample variance 

and the uncertainty on the method as determined by simulations  

3. Cross-check with independent methods (and combine)

Buchs et al.2019  
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DES Year 3 Redshift Methodology

Photometry

Deep field 
catalogueCOSMOS30 Spectra PAU

PhotometryRedshifts

Redshift-colour 
relation 

Data

Observables

Statistics

Myles, Alarcon and Amon et al.
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DES Year 3 Redshift Methodology
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see Giulia Giannini’s talk! 

Myles, Alarcon and Amon et al.
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DES Year 3 Redshift Methodology
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Blending and shear calibration

1. Image simulations that are well-matched to data as a testing bed 

2. Full redshift analysis to understand shear calibration tomographically 

3. Understand blending as a redshift dependent effect



DES Year 3 Shear calibration

Data Sim

MacCrann et al. in prep.  

In Year 3, we account for blending as a redshift 
dependent effect and find a significant impact, 
even at the relatively shallow depth of DES. 

We propagate this to mitigate the impact of 
blending on cosmology. 
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z-slice that is sheared 

non-zero response to shear 
applied in different redshift 
interval  

z-range that is sheared 

sim 
data

galaxies z >1



Intrinsic Alignment modelling

BACKGROUND FOREGROUND
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1. Is the IA model suited to late-type galaxies, which dominate lensing samples?

2. Is the IA model flexible enough to encompass our uncertainty here?



DES Year 3 Intrinsic Alignment modelling 

Previous analyses assume the  Nonlinear Alignment model (NLA; Bridle and King 
2007) - that IA linear in the tidal field with a nonlinear power spectrum - either 
allowing for redshift evolution (DES Year 1, HSC) or fixing it (KiDS). 

Late-type galaxies are not well described by this framework.  

In DES Y3, we incorporate a model that accounts for tidal torquing, the Tidal 
Alignment and Tidal Torquing model or (TATT; Blazek et al 2017):  

- TATT is a superspace of the NLA model, thus more conservative 

- more physically motivated to account for late-types 

- simulated tests reveal that NLA model recovers a biased cosmology*  

Troxel et al. 2019 
Samuroff et al. 2019 

late-type 
 

early-type 
 

aka TATT



DES Year 3 Intrinsic Alignment modelling 

Previous analyses assume the  Nonlinear Alignment model (NLA; Bridle and King 
2007) - that IA linear in the tidal field with a nonlinear power spectrum - either 
allowing for redshift evolution (DES Year 1, HSC) or fixing it (KiDS). 

Late-type galaxies are not well described by this framework.  

In DES Y3, we incorporate a model that accounts for tidal torquing, the Tidal 
Alignment and Tidal Torquing model or (TATT; Blazek et al 2017):  

- TATT is a superspace of the NLA model, thus more conservative 

- more physically motivated to account for late-types 

- simulated tests reveal that NLA model recovers a biased cosmology*  

Troxel et al. 2019 

Secco et al. in prep  

aka TATT

*input IA use the best fit 
from  DES Y1 and  are 
consistent with direct 
measurement limits

PRELIMINARY 
& SIMULATED

Ωm

σ8



DES Year 3 Cosmic Shear Cosmology - Amon et al. in prep. 

    1321 to 4143 deg2 

    26M to 101M galaxies

BLIND

PRELIMINARY 
& SIMULATED

stay tuned!



Dark Energy Survey


